These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
227 related items for PubMed ID: 27207497
1. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Wang J, Fang Z, Cheng W, Tsang PE, Zhao D. Ecotoxicology; 2016 Aug; 25(6):1202-10. PubMed ID: 27207497 [Abstract] [Full Text] [Related]
2. Effects of zero-valent iron nanoparticles and quinclorac coexposure on the growth and antioxidant system of rice (Oryza sativa L.). Zhang R, Bai X, Shao J, Chen A, Wu H, Luo S. Ecotoxicol Environ Saf; 2020 Oct 15; 203():111054. PubMed ID: 32888616 [Abstract] [Full Text] [Related]
3. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Wang J, Fang Z, Cheng W, Yan X, Tsang PE, Zhao D. Environ Pollut; 2016 Mar 15; 210():338-45. PubMed ID: 26803790 [Abstract] [Full Text] [Related]
4. Differential growth and metabolic responses induced by nano-scale zero valent iron in germinating seeds and seedlings of Oryza sativa L. cv. Swarna. Guha T, Gopal G, Chatterjee R, Mukherjee A, Kundu R. Ecotoxicol Environ Saf; 2020 Nov 15; 204():111104. PubMed ID: 32791360 [Abstract] [Full Text] [Related]
5. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. Wang Y, Fang Z, Kang Y, Tsang EP. J Hazard Mater; 2014 Jun 30; 275():230-7. PubMed ID: 24880637 [Abstract] [Full Text] [Related]
6. Phytotoxicity of iron-based materials in mung bean: Seed germination tests. Sun Y, Wang W, Zheng F, Zhang S, Wang F, Liu S. Chemosphere; 2020 Jul 30; 251():126432. PubMed ID: 32169709 [Abstract] [Full Text] [Related]
7. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Guha T, Ravikumar KVG, Mukherjee A, Mukherjee A, Kundu R. Plant Physiol Biochem; 2018 Jun 30; 127():403-413. PubMed ID: 29679934 [Abstract] [Full Text] [Related]
8. Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles. Gil-Díaz M, Alonso J, Rodríguez-Valdés E, Pinilla P, Lobo MC. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014 Jun 30; 49(12):1361-9. PubMed ID: 25072767 [Abstract] [Full Text] [Related]
9. Metabolomic profiles reveals the dose-dependent effects of rice grain yield and nutritional quality upon exposure zero-valent iron nanoparticles. Qian C, Wu J, Wang H, Yang D, Cui J. Sci Total Environ; 2023 Jun 25; 879():163089. PubMed ID: 37001268 [Abstract] [Full Text] [Related]
10. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. Su H, Fang Z, Tsang PE, Zheng L, Cheng W, Fang J, Zhao D. J Hazard Mater; 2016 Nov 15; 318():533-540. PubMed ID: 27469041 [Abstract] [Full Text] [Related]
11. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. El-Temsah YS, Joner EJ. Chemosphere; 2012 Sep 15; 89(1):76-82. PubMed ID: 22595530 [Abstract] [Full Text] [Related]
12. Nano-scale zero valent iron modulates Fe/Cd transporters and immobilizes soil Cd for production of Cd free rice. Guha T, Barman S, Mukherjee A, Kundu R. Chemosphere; 2020 Dec 15; 260():127533. PubMed ID: 32679374 [Abstract] [Full Text] [Related]
13. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. El-Temsah YS, Joner EJ. Environ Toxicol; 2012 Jan 15; 27(1):42-9. PubMed ID: 20549639 [Abstract] [Full Text] [Related]
14. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review. Xue W, Huang D, Zeng G, Wan J, Cheng M, Zhang C, Hu C, Li J. Chemosphere; 2018 Nov 15; 210():1145-1156. PubMed ID: 30208540 [Abstract] [Full Text] [Related]
15. Toxicity of zero-valent iron nanoparticles to soil organisms and the associated defense mechanisms: a review. Zhang S, Yi K, Chen A, Shao J, Peng L, Luo S. Ecotoxicology; 2022 Aug 15; 31(6):873-883. PubMed ID: 35834074 [Abstract] [Full Text] [Related]
16. Physiological effects of zero-valent iron nanoparticles in rhizosphere on edible crop, Medicago sativa (Alfalfa), grown in soil. Kim JH, Kim D, Seo SM, Kim D. Ecotoxicology; 2019 Oct 15; 28(8):869-877. PubMed ID: 31392635 [Abstract] [Full Text] [Related]
17. Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. Li X, Yang Y, Gao B, Zhang M. PLoS One; 2015 Oct 15; 10(4):e0122884. PubMed ID: 25901959 [Abstract] [Full Text] [Related]
18. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores. Chekli L, Brunetti G, Marzouk ER, Maoz-Shen A, Smith E, Naidu R, Shon HK, Lombi E, Donner E. Environ Pollut; 2016 Sep 15; 216():636-645. PubMed ID: 27357483 [Abstract] [Full Text] [Related]
19. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. El-Temsah YS, Joner EJ. Chemosphere; 2013 Jun 15; 92(1):131-7. PubMed ID: 23522781 [Abstract] [Full Text] [Related]
20. Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. Chang MC, Kang HY. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May 15; 44(6):576-82. PubMed ID: 19337920 [Abstract] [Full Text] [Related] Page: [Next] [New Search]