These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
227 related items for PubMed ID: 27207497
21. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Lefevre E, Bossa N, Wiesner MR, Gunsch CK. Sci Total Environ; 2016 Sep 15; 565():889-901. PubMed ID: 26897610 [Abstract] [Full Text] [Related]
22. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Su H, Fang Z, Tsang PE, Fang J, Zhao D. Environ Pollut; 2016 Jul 15; 214():94-100. PubMed ID: 27064615 [Abstract] [Full Text] [Related]
23. Nano zero-valent iron enhances the absorption and transport of chromium in rice (Oryza sativa L.): Implication for Cr risks management in paddy fields. Liu T, Guan Z, Li J, Ao M, Sun S, Deng T, Wang S, Tang Y, Lin Q, Ni Z, Qiu R. Sci Total Environ; 2023 Sep 15; 891():164232. PubMed ID: 37225094 [Abstract] [Full Text] [Related]
24. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils. Liu X, Yang L, Zhao H, Wang W. Sci Total Environ; 2020 Mar 15; 708():134479. PubMed ID: 31796288 [Abstract] [Full Text] [Related]
25. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Němeček J, Lhotský O, Cajthaml T. Sci Total Environ; 2014 Jul 01; 485-486():739-747. PubMed ID: 24369106 [Abstract] [Full Text] [Related]
26. In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar. Zhang R, Zhang N, Fang Z. Water Sci Technol; 2018 Mar 01; 77(5-6):1622-1631. PubMed ID: 29595164 [Abstract] [Full Text] [Related]
27. Zero-valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms. Ševců A, El-Temsah YS, Filip J, Joner EJ, Bobčíková K, Černík M. Environ Sci Pollut Res Int; 2017 Sep 01; 24(26):21191-21202. PubMed ID: 28733821 [Abstract] [Full Text] [Related]
28. Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation. Galdames A, Ruiz-Rubio L, Orueta M, Sánchez-Arzalluz M, Vilas-Vilela JL. Int J Environ Res Public Health; 2020 Aug 11; 17(16):. PubMed ID: 32796749 [Abstract] [Full Text] [Related]
29. Remediation of contaminated soils by enhanced nanoscale zero valent iron. Jiang D, Zeng G, Huang D, Chen M, Zhang C, Huang C, Wan J. Environ Res; 2018 May 11; 163():217-227. PubMed ID: 29459304 [Abstract] [Full Text] [Related]
30. Reducing As availability in calcareous soils using nanoscale zero valent iron. Azari P, Bostani AA. Environ Sci Pollut Res Int; 2017 Sep 11; 24(25):20438-20445. PubMed ID: 28707247 [Abstract] [Full Text] [Related]
31. Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils. Oleszczuk P, Kołtowski M. Chemosphere; 2017 Feb 11; 168():1467-1476. PubMed ID: 27916262 [Abstract] [Full Text] [Related]
32. Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils. Baragaño D, Alonso J, Gallego JR, Lobo MC, Gil-Díaz M. Chemosphere; 2020 Jan 11; 238():124624. PubMed ID: 31472353 [Abstract] [Full Text] [Related]
33. Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles. Fajardo C, Saccà ML, Martinez-Gomariz M, Costa G, Nande M, Martin M. Chemosphere; 2013 Oct 11; 93(6):1077-83. PubMed ID: 23816452 [Abstract] [Full Text] [Related]
34. Evaluating phytotoxicity of bare and starch-stabilized zero-valent iron nanoparticles in mung bean. Sun Y, Jing R, Zheng F, Zhang S, Jiao W, Wang F. Chemosphere; 2019 Dec 11; 236():124336. PubMed ID: 31310976 [Abstract] [Full Text] [Related]
35. The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response. Mokarram-Kashtiban S, Hosseini SM, Tabari Kouchaksaraei M, Younesi H. Environ Sci Pollut Res Int; 2019 Apr 11; 26(11):10776-10789. PubMed ID: 30778927 [Abstract] [Full Text] [Related]
36. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles. Jiamjitrpanich W, Polprasert C, Parkpian P, Delaune RD, Jugsujinda A. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Apr 11; 45(3):263-74. PubMed ID: 20390867 [Abstract] [Full Text] [Related]
37. Effect of zero valent iron nanoparticles to Eisenia fetida in three soil types. Yirsaw BD, Mayilswami S, Megharaj M, Chen Z, Naidu R. Environ Sci Pollut Res Int; 2016 May 11; 23(10):9822-31. PubMed ID: 26856861 [Abstract] [Full Text] [Related]
38. Influence of electrolyte and voltage on the direct current enhanced transport of iron nanoparticles in clay. Gomes HI, Dias-Ferreira C, Ribeiro AB, Pamukcu S. Chemosphere; 2014 Mar 11; 99():171-9. PubMed ID: 24252496 [Abstract] [Full Text] [Related]
39. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. El-Temsah YS, Sevcu A, Bobcikova K, Cernik M, Joner EJ. Chemosphere; 2016 Feb 11; 144():2221-8. PubMed ID: 26598990 [Abstract] [Full Text] [Related]
40. Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Saccà ML, Fajardo C, Costa G, Lobo C, Nande M, Martin M. Chemosphere; 2014 Jun 11; 104():184-9. PubMed ID: 24287264 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]