These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


259 related items for PubMed ID: 27208114

  • 1. Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses.
    Wheaton GH, Mukherjee A, Kelly RM.
    Appl Environ Microbiol; 2016 Aug 01; 82(15):4613-4627. PubMed ID: 27208114
    [Abstract] [Full Text] [Related]

  • 2. Extremely Thermoacidophilic Metallosphaera Species Mediate Mobilization and Oxidation of Vanadium and Molybdenum Oxides.
    Wheaton GH, Vitko NP, Counts JA, Dulkis JA, Podolsky I, Mukherjee A, Kelly RM.
    Appl Environ Microbiol; 2019 Mar 01; 85(5):. PubMed ID: 30578261
    [Abstract] [Full Text] [Related]

  • 3. The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism.
    Auernik KS, Maezato Y, Blum PH, Kelly RM.
    Appl Environ Microbiol; 2008 Feb 01; 74(3):682-92. PubMed ID: 18083856
    [Abstract] [Full Text] [Related]

  • 4. Complete genome sequence of Metallosphaera cuprina, a metal sulfide-oxidizing archaeon from a hot spring.
    Liu LJ, You XY, Zheng H, Wang S, Jiang CY, Liu SJ.
    J Bacteriol; 2011 Jul 01; 193(13):3387-8. PubMed ID: 21551305
    [Abstract] [Full Text] [Related]

  • 5. Role of an archaeal PitA transporter in the copper and arsenic resistance of Metallosphaera sedula, an extreme thermoacidophile.
    McCarthy S, Ai C, Wheaton G, Tevatia R, Eckrich V, Kelly R, Blum P.
    J Bacteriol; 2014 Oct 01; 196(20):3562-70. PubMed ID: 25092032
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes.
    Auernik KS, Kelly RM.
    Appl Environ Microbiol; 2008 Dec 01; 74(24):7723-32. PubMed ID: 18931292
    [Abstract] [Full Text] [Related]

  • 8. Increased chalcopyrite bioleaching capabilities of extremely thermoacidophilic Metallosphaera sedula inocula by mixotrophic propagation.
    Ai C, Yan Z, Chai H, Gu T, Wang J, Chai L, Qiu G, Zeng W.
    J Ind Microbiol Biotechnol; 2019 Aug 01; 46(8):1113-1127. PubMed ID: 31165968
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Physiological versatility of the extremely thermoacidophilic archaeon Metallosphaera sedula supported by transcriptomic analysis of heterotrophic, autotrophic, and mixotrophic growth.
    Auernik KS, Kelly RM.
    Appl Environ Microbiol; 2010 Feb 01; 76(3):931-5. PubMed ID: 20008169
    [Abstract] [Full Text] [Related]

  • 11. Inorganic Polyphosphate, Exopolyphosphatase, and Pho84-Like Transporters May Be Involved in Copper Resistance in Metallosphaera sedula DSM 5348T.
    Rivero M, Torres-Paris C, Muñoz R, Cabrera R, Navarro CA, Jerez CA.
    Archaea; 2018 Feb 01; 2018():5251061. PubMed ID: 29692683
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Impact of molecular hydrogen on chalcopyrite bioleaching by the extremely thermoacidophilic archaeon Metallosphaera sedula.
    Auernik KS, Kelly RM.
    Appl Environ Microbiol; 2010 Apr 01; 76(8):2668-72. PubMed ID: 20190092
    [Abstract] [Full Text] [Related]

  • 14. Metal resistance and lithoautotrophy in the extreme thermoacidophile Metallosphaera sedula.
    Maezato Y, Johnson T, McCarthy S, Dana K, Blum P.
    J Bacteriol; 2012 Dec 01; 194(24):6856-63. PubMed ID: 23065978
    [Abstract] [Full Text] [Related]

  • 15. Epimerase (Msed_0639) and mutase (Msed_0638 and Msed_2055) convert (S)-methylmalonyl-coenzyme A (CoA) to succinyl-CoA in the Metallosphaera sedula 3-hydroxypropionate/4-hydroxybutyrate cycle.
    Han Y, Hawkins AS, Adams MW, Kelly RM.
    Appl Environ Microbiol; 2012 Sep 01; 78(17):6194-202. PubMed ID: 22752162
    [Abstract] [Full Text] [Related]

  • 16. Conversion of 4-hydroxybutyrate to acetyl coenzyme A and its anapleurosis in the Metallosphaera sedula 3-hydroxypropionate/4-hydroxybutyrate carbon fixation pathway.
    Hawkins AB, Adams MW, Kelly RM.
    Appl Environ Microbiol; 2014 Apr 01; 80(8):2536-45. PubMed ID: 24532060
    [Abstract] [Full Text] [Related]

  • 17. Evolution of copper arsenate resistance for enhanced enargite bioleaching using the extreme thermoacidophile Metallosphaera sedula.
    Ai C, McCarthy S, Liang Y, Rudrappa D, Qiu G, Blum P.
    J Ind Microbiol Biotechnol; 2017 Dec 01; 44(12):1613-1625. PubMed ID: 28770421
    [Abstract] [Full Text] [Related]

  • 18. Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO2 incorporation into 3-hydroxypropionate by metabolically engineered Pyrococcus furiosus.
    Lian H, Zeldes BM, Lipscomb GL, Hawkins AB, Han Y, Loder AJ, Nishiyama D, Adams MW, Kelly RM.
    Biotechnol Bioeng; 2016 Dec 01; 113(12):2652-2660. PubMed ID: 27315782
    [Abstract] [Full Text] [Related]

  • 19. Enhancement of Metallosphaera sedula Bioleaching by Targeted Recombination and Adaptive Laboratory Evolution.
    McCarthy S, Ai C, Blum P.
    Adv Appl Microbiol; 2018 Dec 01; 104():135-165. PubMed ID: 30143251
    [Abstract] [Full Text] [Related]

  • 20. VapC toxins drive cellular dormancy under uranium stress for the extreme thermoacidophile Metallosphaera prunae.
    Mukherjee A, Wheaton GH, Counts JA, Ijeomah B, Desai J, Kelly RM.
    Environ Microbiol; 2017 Jul 01; 19(7):2831-2842. PubMed ID: 28585353
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.