These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 27210105

  • 1. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking.
    Serrancolí G, Kinney AL, Fregly BJ, Font-Llagunes JM.
    J Biomech Eng; 2016 Aug 01; 138(8):0810011-08100111. PubMed ID: 27210105
    [Abstract] [Full Text] [Related]

  • 2. Muscle synergies may improve optimization prediction of knee contact forces during walking.
    Walter JP, Kinney AL, Banks SA, D'Lima DD, Besier TF, Lloyd DG, Fregly BJ.
    J Biomech Eng; 2014 Feb 01; 136(2):021031. PubMed ID: 24402438
    [Abstract] [Full Text] [Related]

  • 3. Co-simulation of neuromuscular dynamics and knee mechanics during human walking.
    Thelen DG, Won Choi K, Schmitz AM.
    J Biomech Eng; 2014 Feb 01; 136(2):021033. PubMed ID: 24390129
    [Abstract] [Full Text] [Related]

  • 4. Simultaneous prediction of muscle and contact forces in the knee during gait.
    Lin YC, Walter JP, Banks SA, Pandy MG, Fregly BJ.
    J Biomech; 2010 Mar 22; 43(5):945-52. PubMed ID: 19962703
    [Abstract] [Full Text] [Related]

  • 5. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.
    Guess TM, Stylianou AP, Kia M.
    J Biomech Eng; 2014 Feb 22; 136(2):021032. PubMed ID: 24389997
    [Abstract] [Full Text] [Related]

  • 6. Immediate effects of valgus knee bracing on tibiofemoral contact forces and knee muscle forces.
    Hall M, Diamond LE, Lenton GK, Pizzolato C, Saxby DJ.
    Gait Posture; 2019 Feb 22; 68():55-62. PubMed ID: 30458429
    [Abstract] [Full Text] [Related]

  • 7. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
    Gerus P, Sartori M, Besier TF, Fregly BJ, Delp SL, Banks SA, Pandy MG, D'Lima DD, Lloyd DG.
    J Biomech; 2013 Nov 15; 46(16):2778-86. PubMed ID: 24074941
    [Abstract] [Full Text] [Related]

  • 8. Intra-Articular Knee Contact Force Estimation During Walking Using Force-Reaction Elements and Subject-Specific Joint Model.
    Jung Y, Phan CB, Koo S.
    J Biomech Eng; 2016 Feb 15; 138(2):021016. PubMed ID: 26720762
    [Abstract] [Full Text] [Related]

  • 9. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant.
    Kim HJ, Fernandez JW, Akbarshahi M, Walter JP, Fregly BJ, Pandy MG.
    J Orthop Res; 2009 Oct 15; 27(10):1326-31. PubMed ID: 19396858
    [Abstract] [Full Text] [Related]

  • 10. Prediction of medial and lateral contact force of the knee joint during normal and turning gait after total knee replacement.
    Purevsuren T, Dorj A, Kim K, Kim YH.
    Proc Inst Mech Eng H; 2016 Apr 15; 230(4):288-97. PubMed ID: 26908641
    [Abstract] [Full Text] [Related]

  • 11. Inverse dynamic estimates of muscle recruitment and joint contact forces are more realistic when minimizing muscle activity rather than metabolic energy or contact forces.
    Zargham A, Afschrift M, De Schutter J, Jonkers I, De Groote F.
    Gait Posture; 2019 Oct 15; 74():223-230. PubMed ID: 31563823
    [Abstract] [Full Text] [Related]

  • 12. Influence of musculoskeletal model parameter values on prediction of accurate knee contact forces during walking.
    Serrancolí G, Kinney AL, Fregly BJ.
    Med Eng Phys; 2020 Nov 15; 85():35-47. PubMed ID: 33081962
    [Abstract] [Full Text] [Related]

  • 13. Selective lateral muscle activation in moderate medial knee osteoarthritis subjects does not unload medial knee condyle.
    Brandon SC, Miller RH, Thelen DG, Deluzio KJ.
    J Biomech; 2014 Apr 11; 47(6):1409-15. PubMed ID: 24581816
    [Abstract] [Full Text] [Related]

  • 14. Dynamic knee loads during gait predict proximal tibial bone distribution.
    Hurwitz DE, Sumner DR, Andriacchi TP, Sugar DA.
    J Biomech; 1998 May 11; 31(5):423-30. PubMed ID: 9727339
    [Abstract] [Full Text] [Related]

  • 15. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
    Lin YC, Walter JP, Pandy MG.
    Ann Biomed Eng; 2018 Aug 11; 46(8):1216-1227. PubMed ID: 29671152
    [Abstract] [Full Text] [Related]

  • 16. The redundant nature of locomotor optimization laws.
    Collins JJ.
    J Biomech; 1995 Mar 11; 28(3):251-67. PubMed ID: 7730385
    [Abstract] [Full Text] [Related]

  • 17. Individual muscle contributions to the axial knee joint contact force during normal walking.
    Sasaki K, Neptune RR.
    J Biomech; 2010 Oct 19; 43(14):2780-4. PubMed ID: 20655046
    [Abstract] [Full Text] [Related]

  • 18. Tibiofemoral Contact Forces in the Anterior Cruciate Ligament-Reconstructed Knee.
    Saxby DJ, Bryant AL, Modenese L, Gerus P, Killen BA, Konrath J, Fortin K, Wrigley TV, Bennell KL, Cicuttini FM, Vertullo C, Feller JA, Whitehead T, Gallie P, Lloyd DG.
    Med Sci Sports Exerc; 2016 Nov 19; 48(11):2195-2206. PubMed ID: 27337173
    [Abstract] [Full Text] [Related]

  • 19. Tibiofemoral contact forces during walking, running and sidestepping.
    Saxby DJ, Modenese L, Bryant AL, Gerus P, Killen B, Fortin K, Wrigley TV, Bennell KL, Cicuttini FM, Lloyd DG.
    Gait Posture; 2016 Sep 19; 49():78-85. PubMed ID: 27391249
    [Abstract] [Full Text] [Related]

  • 20. Stair climbing results in more challenging patellofemoral contact mechanics and kinematics than walking at early knee flexion under physiological-like quadriceps loading.
    Goudakos IG, König C, Schöttle PB, Taylor WR, Singh NB, Roberts I, Streitparth F, Duda GN, Heller MO.
    J Biomech; 2009 Nov 13; 42(15):2590-6. PubMed ID: 19656517
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.