These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


92 related items for PubMed ID: 2721915

  • 21. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities.
    Novy V, Brunner B, Nidetzky B.
    Microb Cell Fact; 2018 Apr 11; 17(1):59. PubMed ID: 29642896
    [Abstract] [Full Text] [Related]

  • 22. Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity.
    Skory CD.
    Appl Microbiol Biotechnol; 2004 Apr 11; 64(2):237-42. PubMed ID: 14624317
    [Abstract] [Full Text] [Related]

  • 23. Adding glucose delays the conversion of ethanol and acetic acid to caproic acid in Lacrimispora celerecrescens JSJ-1.
    Jin X, Yin X, Ling L, Mao H, Dong X, Chang X, Chen M, Fang S.
    Appl Microbiol Biotechnol; 2023 Feb 11; 107(4):1453-1463. PubMed ID: 36703009
    [Abstract] [Full Text] [Related]

  • 24. An enzymological profile of the production of lactic acid in caries-associated plaque and in plaque formed on sound surfaces of deciduous teeth.
    Tanaka H, Tamura M, Kikuchi K, Kuwata F, Hirano Y, Hayashi K.
    Caries Res; 1993 Feb 11; 27(2):130-4. PubMed ID: 8319256
    [Abstract] [Full Text] [Related]

  • 25. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli.
    Zhu J, Shimizu K.
    Appl Microbiol Biotechnol; 2004 Apr 11; 64(3):367-75. PubMed ID: 14673546
    [Abstract] [Full Text] [Related]

  • 26. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation.
    Thitiprasert S, Sooksai S, Thongchul N.
    Appl Biochem Biotechnol; 2011 Aug 11; 164(8):1305-22. PubMed ID: 21416338
    [Abstract] [Full Text] [Related]

  • 27. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V, Brunner B, Müller G, Nidetzky B.
    Biotechnol Bioeng; 2017 Jan 11; 114(1):163-171. PubMed ID: 27426989
    [Abstract] [Full Text] [Related]

  • 28. Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate.
    Li HF, Knutson BL, Nokes SE, Lynn BC, Flythe MD.
    Appl Microbiol Biotechnol; 2012 Feb 11; 93(4):1777-84. PubMed ID: 22218768
    [Abstract] [Full Text] [Related]

  • 29. Substrate utilization by Clostridium estertheticum cultivated in meat juice medium.
    Yang X, Balamurugan S, Gill CO.
    Int J Food Microbiol; 2009 Jan 15; 128(3):501-5. PubMed ID: 19027974
    [Abstract] [Full Text] [Related]

  • 30. [Screening of a low alcohol dehydrogenase activity mutant of rhizopus oryzae and the regulation of Zn2+ and Mg2+].
    Pan LJ, Fu P, Zheng Z, Luo SZ, Jiang ST.
    Wei Sheng Wu Xue Bao; 2006 Aug 15; 46(4):586-90. PubMed ID: 17037060
    [Abstract] [Full Text] [Related]

  • 31. Metabolism of round spermatids: evidence that lactate is preferred substrate.
    Nakamura M, Okinaga S, Arai K.
    Am J Physiol; 1984 Aug 15; 247(2 Pt 1):E234-42. PubMed ID: 6431825
    [Abstract] [Full Text] [Related]

  • 32. Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures.
    de Vries W, Kapteijn WM, van der Beek EG, Stouthamer AH.
    J Gen Microbiol; 1970 Nov 15; 63(3):333-45. PubMed ID: 4930427
    [No Abstract] [Full Text] [Related]

  • 33. The fermentative production of acetone-butanol by Clostridium acetobutylicum.
    Fouad M, Abou-Zeid AA, Yassein M.
    Acta Biol Acad Sci Hung; 1976 Nov 15; 27(2-3):107-17. PubMed ID: 16418
    [Abstract] [Full Text] [Related]

  • 34. Novel high butanol production from lactic acid and pentose by Clostridium saccharoperbutylacetonicum.
    Yoshida T, Tashiro Y, Sonomoto K.
    J Biosci Bioeng; 2012 Nov 15; 114(5):526-30. PubMed ID: 22809833
    [Abstract] [Full Text] [Related]

  • 35. Metabolic Engineering of Lactobacillus plantarum for Direct l-Lactic Acid Production From Raw Corn Starch.
    Okano K, Uematsu G, Hama S, Tanaka T, Noda H, Kondo A, Honda K.
    Biotechnol J; 2018 May 15; 13(5):e1700517. PubMed ID: 29393585
    [Abstract] [Full Text] [Related]

  • 36. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene.
    Skory CD.
    J Ind Microbiol Biotechnol; 2003 Jan 15; 30(1):22-7. PubMed ID: 12545382
    [Abstract] [Full Text] [Related]

  • 37. Kinetic characterization of recombinant Bacillus coagulans FDP-activated l-lactate dehydrogenase expressed in Escherichia coli and its substrate specificity.
    Jiang T, Xu Y, Sun X, Zheng Z, Ouyang J.
    Protein Expr Purif; 2014 Mar 15; 95():219-25. PubMed ID: 24412354
    [Abstract] [Full Text] [Related]

  • 38. Induction of lactate production associated with a decrease in NADH cell content enables growth resumption of Clostridium cellulolyticum in batch cultures on cellobiose.
    Payot S, Guedon E, Gelhaye E, Petitdemange H.
    Res Microbiol; 1999 Sep 15; 150(7):465-73. PubMed ID: 10540910
    [Abstract] [Full Text] [Related]

  • 39. Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum.
    Oshiro M, Hanada K, Tashiro Y, Sonomoto K.
    Appl Microbiol Biotechnol; 2010 Jul 15; 87(3):1177-85. PubMed ID: 20502892
    [Abstract] [Full Text] [Related]

  • 40. Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum.
    Wiegel J, Ljungdahl LG, Rawson JR.
    J Bacteriol; 1979 Sep 15; 139(3):800-10. PubMed ID: 39062
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 5.