These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 27220469

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. 8-Oxoguanine DNA glycosylase 1: Beyond repair of the oxidatively modified base lesions.
    Ba X, Boldogh I.
    Redox Biol; 2018 Apr; 14():669-678. PubMed ID: 29175754
    [Abstract] [Full Text] [Related]

  • 24. Stimulation of DNA glycosylase activity of OGG1 by NEIL1: functional collaboration between two human DNA glycosylases.
    Mokkapati SK, Wiederhold L, Hazra TK, Mitra S.
    Biochemistry; 2004 Sep 14; 43(36):11596-604. PubMed ID: 15350146
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. 8-Oxo-7,8-dihydroguanine, friend and foe: Epigenetic-like regulator versus initiator of mutagenesis.
    Fleming AM, Burrows CJ.
    DNA Repair (Amst); 2017 Aug 14; 56():75-83. PubMed ID: 28629775
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Mechanism of interaction between human 8-oxoguanine-DNA glycosylase and AP endonuclease.
    Sidorenko VS, Nevinsky GA, Zharkov DO.
    DNA Repair (Amst); 2007 Mar 01; 6(3):317-28. PubMed ID: 17126083
    [Abstract] [Full Text] [Related]

  • 29. Circadian Modulation of 8-Oxoguanine DNA Damage Repair.
    Manzella N, Bracci M, Strafella E, Staffolani S, Ciarapica V, Copertaro A, Rapisarda V, Ledda C, Amati M, Valentino M, Tomasetti M, Stevens RG, Santarelli L.
    Sci Rep; 2015 Sep 04; 5():13752. PubMed ID: 26337123
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. [New non-hydrolyzable substrate analogs for 8-oxoguanine-DNA glycosylases].
    Taraneneko MV, Volkov EM, Saparbarv MK, Kuznetsov SA.
    Mol Biol (Mosk); 2004 Sep 04; 38(5):858-68. PubMed ID: 15554188
    [Abstract] [Full Text] [Related]

  • 32. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation: implications on transcription.
    Cogoi S, Ferino A, Miglietta G, Pedersen EB, Xodo LE.
    Nucleic Acids Res; 2018 Jan 25; 46(2):661-676. PubMed ID: 29165690
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Increased oxidative DNA damage and decreased expression of base excision repair proteins in airway epithelial cells of women who cook with biomass fuels.
    Mukherjee B, Bindhani B, Saha H, Ray MR.
    Environ Toxicol Pharmacol; 2014 Sep 25; 38(2):341-52. PubMed ID: 25128766
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. XRCC1 interactions with multiple DNA glycosylases: a model for its recruitment to base excision repair.
    Campalans A, Marsin S, Nakabeppu Y, O'connor TR, Boiteux S, Radicella JP.
    DNA Repair (Amst); 2005 Jul 12; 4(7):826-35. PubMed ID: 15927541
    [Abstract] [Full Text] [Related]

  • 39. Transient OGG1, APE1, PARP1 and Polβ expression in an Alzheimer's disease mouse model.
    Lillenes MS, Støen M, Gómez-Muñoz M, Torp R, Günther CC, Nilsson LN, Tønjum T.
    Mech Ageing Dev; 2013 Oct 12; 134(10):467-77. PubMed ID: 24121118
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.