These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


199 related items for PubMed ID: 27226770

  • 21. Mutation of the Xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in industrially used Trichoderma strains.
    Derntl C, Gudynaite-Savitch L, Calixte S, White T, Mach RL, Mach-Aigner AR.
    Biotechnol Biofuels; 2013 May 02; 6(1):62. PubMed ID: 23638967
    [Abstract] [Full Text] [Related]

  • 22. Characterization of the Ca(2+) -responsive signaling pathway in regulating the expression and secretion of cellulases in Trichoderma reesei Rut-C30.
    Chen L, Zou G, Wang J, Wang J, Liu R, Jiang Y, Zhao G, Zhou Z.
    Mol Microbiol; 2016 May 02; 100(3):560-75. PubMed ID: 27109892
    [Abstract] [Full Text] [Related]

  • 23. Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator.
    Zhang X, Li Y, Zhao X, Bai F.
    Bioresour Technol; 2017 Jan 02; 223():317-322. PubMed ID: 27818160
    [Abstract] [Full Text] [Related]

  • 24. Inducer-free recombinant protein production in Trichoderma reesei: secretory production of endogenous enzymes and heterologous nanobodies using glucose as the sole carbon source.
    Arai T, Wada M, Nishiguchi H, Takimura Y, Ishii J.
    Microb Cell Fact; 2023 May 19; 22(1):103. PubMed ID: 37208691
    [Abstract] [Full Text] [Related]

  • 25. The mating type locus protein MAT1-2-1 of Trichoderma reesei interacts with Xyr1 and regulates cellulase gene expression in response to light.
    Zheng F, Cao Y, Wang L, Lv X, Meng X, Zhang W, Chen G, Liu W.
    Sci Rep; 2017 Dec 11; 7(1):17346. PubMed ID: 29229981
    [Abstract] [Full Text] [Related]

  • 26. Tailoring the expression of Xyr1 leads to efficient production of lignocellulolytic enzymes in Trichoderma reesei for improved saccharification of corncob residues.
    Shen L, Yan A, Wang Y, Wang Y, Liu H, Zhong Y.
    Biotechnol Biofuels Bioprod; 2022 Dec 17; 15(1):142. PubMed ID: 36528622
    [Abstract] [Full Text] [Related]

  • 27. The relation between xyr1 overexpression in Trichoderma harzianum and sugarcane bagasse saccharification performance.
    da Silva Delabona P, Rodrigues GN, Zubieta MP, Ramoni J, Codima CA, Lima DJ, Farinas CS, da Cruz Pradella JG, Seiboth B.
    J Biotechnol; 2017 Mar 20; 246():24-32. PubMed ID: 28192217
    [Abstract] [Full Text] [Related]

  • 28. Involvement of Xyr1 and Are1 for Trichodermapepsin Gene Expression in Response to Cellulose and Galactose in Trichoderma reesei.
    Daranagama ND, Suzuki Y, Shida Y, Ogasawara W.
    Curr Microbiol; 2020 Aug 20; 77(8):1506-1517. PubMed ID: 32239288
    [Abstract] [Full Text] [Related]

  • 29. Inducer-free cellulase production system based on the constitutive expression of mutated XYR1 and ACE3 in the industrial fungus Trichoderma reesei.
    Arai T, Ichinose S, Shibata N, Kakeshita H, Kodama H, Igarashi K, Takimura Y.
    Sci Rep; 2022 Nov 14; 12(1):19445. PubMed ID: 36376415
    [Abstract] [Full Text] [Related]

  • 30. Single Mutation in Transcriptional Activator Xyr1 Enhances Cellulase and Xylanase Production in Trichoderma reesei on Glucose.
    Lv D, Zhang W, Meng X, Liu W.
    J Agric Food Chem; 2023 Aug 09; 71(31):11993-12003. PubMed ID: 37523749
    [Abstract] [Full Text] [Related]

  • 31. Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production.
    Nakari-Setälä T, Paloheimo M, Kallio J, Vehmaanperä J, Penttilä M, Saloheimo M.
    Appl Environ Microbiol; 2009 Jul 09; 75(14):4853-60. PubMed ID: 19447952
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. [Artificial zinc finger protein mediated cellulase production in Trichoderma reesei Rut-C30].
    Meng Q, Li J, Zhang F, Zhao X, Bai F.
    Sheng Wu Gong Cheng Xue Bao; 2019 Jan 25; 35(1):81-90. PubMed ID: 30756537
    [Abstract] [Full Text] [Related]

  • 34. In Vitro Characterization of a Nuclear Receptor-like Domain of the Xylanase Regulator 1 from Trichoderma reesei.
    Mello-de-Sousa TM, Gorsche R, Jovanović B, Mach RL, Mach-Aigner AR.
    J Fungi (Basel); 2022 Nov 27; 8(12):. PubMed ID: 36547587
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Binding of two transcriptional factors, Xyr1 and ACEI, in the promoter region of cellulase cbh1 gene.
    Ling M, Qin Y, Li N, Liang Z.
    Biotechnol Lett; 2009 Feb 27; 31(2):227-31. PubMed ID: 18854952
    [Abstract] [Full Text] [Related]

  • 38. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.
    Li C, Lin F, Li Y, Wei W, Wang H, Qin L, Zhou Z, Li B, Wu F, Chen Z.
    Microb Cell Fact; 2016 Sep 01; 15(1):151. PubMed ID: 27585813
    [Abstract] [Full Text] [Related]

  • 39. Fusion transcription factors for strong, constitutive expression of cellulases and xylanases in Trichoderma reesei.
    Derntl C, Mach RL, Mach-Aigner AR.
    Biotechnol Biofuels; 2019 Sep 01; 12():231. PubMed ID: 31583017
    [Abstract] [Full Text] [Related]

  • 40. Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype.
    Lichius A, Bidard F, Buchholz F, Le Crom S, Martin J, Schackwitz W, Austerlitz T, Grigoriev IV, Baker SE, Margeot A, Seiboth B, Kubicek CP.
    BMC Genomics; 2015 Apr 20; 16(1):326. PubMed ID: 25909478
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.