These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
214 related items for PubMed ID: 27232891
1. Nontrivial Effect of the Color-Exchange of a Donor/Acceptor Pair in the Engineering of Förster Resonance Energy Transfer (FRET)-Based Indicators. Ohta Y, Kamagata T, Mukai A, Takada S, Nagai T, Horikawa K. ACS Chem Biol; 2016 Jul 15; 11(7):1816-22. PubMed ID: 27232891 [Abstract] [Full Text] [Related]
2. Extensive use of FRET in biological imaging. Arai Y, Nagai T. Microscopy (Oxf); 2013 Aug 15; 62(4):419-28. PubMed ID: 23797967 [Abstract] [Full Text] [Related]
3. Reversible dimerization of Aequorea victoria fluorescent proteins increases the dynamic range of FRET-based indicators. Kotera I, Iwasaki T, Imamura H, Noji H, Nagai T. ACS Chem Biol; 2010 Feb 19; 5(2):215-22. PubMed ID: 20047338 [Abstract] [Full Text] [Related]
4. Anomalous surplus energy transfer observed with multiple FRET acceptors. Koushik SV, Blank PS, Vogel SS. PLoS One; 2009 Nov 25; 4(11):e8031. PubMed ID: 19946626 [Abstract] [Full Text] [Related]
5. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. Eggeling C, Widengren J, Brand L, Schaffer J, Felekyan S, Seidel CA. J Phys Chem A; 2006 Mar 09; 110(9):2979-95. PubMed ID: 16509620 [Abstract] [Full Text] [Related]
7. Nanophotonic control of the Förster resonance energy transfer efficiency. Blum C, Zijlstra N, Lagendijk A, Wubs M, Mosk AP, Subramaniam V, Vos WL. Phys Rev Lett; 2012 Nov 16; 109(20):203601. PubMed ID: 23215487 [Abstract] [Full Text] [Related]
8. Estimating the distance separating fluorescent protein FRET pairs. Vogel SS, van der Meer BW, Blank PS. Methods; 2014 Mar 15; 66(2):131-8. PubMed ID: 23811334 [Abstract] [Full Text] [Related]
9. Förster resonance energy transfer investigations using quantum-dot fluorophores. Clapp AR, Medintz IL, Mattoussi H. Chemphyschem; 2006 Jan 16; 7(1):47-57. PubMed ID: 16370019 [Abstract] [Full Text] [Related]
11. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons. Ozel T, Hernandez-Martinez PL, Mutlugun E, Akin O, Nizamoglu S, Ozel IO, Zhang Q, Xiong Q, Demir HV. Nano Lett; 2013 Jul 10; 13(7):3065-72. PubMed ID: 23755992 [Abstract] [Full Text] [Related]
14. Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. Miyawaki A. Annu Rev Biochem; 2011 Jul 10; 80():357-73. PubMed ID: 21529159 [Abstract] [Full Text] [Related]
15. Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells. Day RN, Davidson MW. Bioessays; 2012 May 10; 34(5):341-50. PubMed ID: 22396229 [Abstract] [Full Text] [Related]
16. Strength in numbers: effects of acceptor abundance on FRET efficiency. Fábián ÁI, Rente T, Szöllosi J, Mátyus L, Jenei A. Chemphyschem; 2010 Dec 03; 11(17):3713-21. PubMed ID: 20936620 [Abstract] [Full Text] [Related]
19. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H. J Am Chem Soc; 2004 Jan 14; 126(1):301-10. PubMed ID: 14709096 [Abstract] [Full Text] [Related]
20. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Sapsford KE, Berti L, Medintz IL. Angew Chem Int Ed Engl; 2006 Jul 10; 45(28):4562-89. PubMed ID: 16819760 [Abstract] [Full Text] [Related] Page: [Next] [New Search]