These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 27235274

  • 1. High kinetic stability of Zn(II) coordinated by the tris(histidine) unit of carbonic anhydrase towards solvolytic dissociation studied by affinity capillary electrophoresis.
    Sato Y, Hoshino H, Iki N.
    J Inorg Biochem; 2016 Aug; 161():122-7. PubMed ID: 27235274
    [Abstract] [Full Text] [Related]

  • 2. Thermodynamics of binding of a sulfonamide inhibitor to metal-mutated carbonic anhydrase as studied by affinity capillary electrophoresis.
    Sato Y, Hoshino H, Iki N.
    J Inorg Biochem; 2015 Sep; 150():133-8. PubMed ID: 26112153
    [Abstract] [Full Text] [Related]

  • 3. Histidine --> carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity.
    Lesburg CA, Huang C, Christianson DW, Fierke CA.
    Biochemistry; 1997 Dec 16; 36(50):15780-91. PubMed ID: 9398308
    [Abstract] [Full Text] [Related]

  • 4. Protonation and reactivity towards carbon dioxide of the mononuclear tetrahedral zinc and cobalt hydroxide complexes, [Tp(Bu)t(,Me)]ZnOH and [Tp(Bu)t(,Me)]CoOH: comparison of the reactivity of the metal hydroxide function in synthetic analogues of carbonic anhydrase.
    Bergquist C, Fillebeen T, Morlok MM, Parkin G.
    J Am Chem Soc; 2003 May 21; 125(20):6189-99. PubMed ID: 12785851
    [Abstract] [Full Text] [Related]

  • 5. Reaction of N,N-diethyldithiocarbamate and other bidentate ligands with Zn, Co and Cu bovine carbonic anhydrases. Inhibition of the enzyme activity and evidence for stable ternary enzyme-metal-ligand complexes.
    Morpurgo L, Desideri A, Rigo A, Viglino P, Rotilio G.
    Biochim Biophys Acta; 1983 Aug 16; 746(3):168-75. PubMed ID: 6309239
    [Abstract] [Full Text] [Related]

  • 6. Structural studies of the [tris(imidazolyl)phosphine]metal nitrate complexes [[PimPrl,But]M(NO3)]+ (M = Co, Cu, Zn, Cd, Hg): comparison of nitrate-binding modes in synthetic analogues of carbonic anhydrase.
    Kimblin C, Murphy VJ, Hascall T, Bridgewater BM, Bonanno JB, Parkin G.
    Inorg Chem; 2000 Mar 06; 39(5):967-74. PubMed ID: 12526376
    [Abstract] [Full Text] [Related]

  • 7. A Zn(II)-binding site engineered into retinol-binding protein exhibits metal-ion specificity and allows highly efficient affinity purification with a newly designed metal ligand.
    Schmidt AM, Müller HN, Skerra A.
    Chem Biol; 1996 Aug 06; 3(8):645-53. PubMed ID: 8807898
    [Abstract] [Full Text] [Related]

  • 8. Interprotein metal ion exchange between cadmium-carbonic anhydrase and apo- or zinc-metallothionein.
    Ejnik J, Muñoz A, Gan T, Shaw CF, Petering DH.
    J Biol Inorg Chem; 1999 Dec 06; 4(6):784-90. PubMed ID: 10631610
    [Abstract] [Full Text] [Related]

  • 9. Structural influence of hydrophobic core residues on metal binding and specificity in carbonic anhydrase II.
    Cox JD, Hunt JA, Compher KM, Fierke CA, Christianson DW.
    Biochemistry; 2000 Nov 14; 39(45):13687-94. PubMed ID: 11076507
    [Abstract] [Full Text] [Related]

  • 10. Kinetic study of catalytic CO(2) hydration by water-soluble model compound of carbonic anhydrase and anion inhibition effect on CO(2) hydration.
    Nakata K, Shimomura N, Shiina N, Izumi M, Ichikawa K, Shiro M.
    J Inorg Biochem; 2002 Apr 28; 89(3-4):255-66. PubMed ID: 12062130
    [Abstract] [Full Text] [Related]

  • 11. Kinetics of Zinc and Cadmium Exchanges between Metallothionein and Carbonic Anhydrase.
    Pinter TB, Stillman MJ.
    Biochemistry; 2015 Oct 13; 54(40):6284-93. PubMed ID: 26401817
    [Abstract] [Full Text] [Related]

  • 12. Co(II) Substitution Enhances the Esterase Activity of a de Novo Designed Zn(II) Carbonic Anhydrase.
    Borghesani V, Zastrow ML, Tolbert AE, Deb A, Penner-Hahn JE, Pecoraro VL.
    Chemistry; 2024 Apr 25; 30(24):e202304367. PubMed ID: 38377169
    [Abstract] [Full Text] [Related]

  • 13. An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria?
    Capasso C, Supuran CT.
    J Enzyme Inhib Med Chem; 2015 Apr 25; 30(2):325-32. PubMed ID: 24766661
    [Abstract] [Full Text] [Related]

  • 14. Comparison between α- and β-carbonic anhydrases: can Zn(His)3(H2O) and Zn(His)(Cys)2(H2O) sites lead to equivalent enzymes?
    Pannetier F, Ohanessian G, Frison G.
    Dalton Trans; 2011 Mar 28; 40(12):2696-8. PubMed ID: 21298147
    [Abstract] [Full Text] [Related]

  • 15. Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues.
    Hunt JA, Ahmed M, Fierke CA.
    Biochemistry; 1999 Jul 13; 38(28):9054-62. PubMed ID: 10413479
    [Abstract] [Full Text] [Related]

  • 16. Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II.
    Huang CC, Lesburg CA, Kiefer LL, Fierke CA, Christianson DW.
    Biochemistry; 1996 Mar 19; 35(11):3439-46. PubMed ID: 8639494
    [Abstract] [Full Text] [Related]

  • 17. Crystallographic analysis of Thr-200-->His human carbonic anhydrase II and its complex with the substrate, HCO3-.
    Xue Y, Vidgren J, Svensson LA, Liljas A, Jonsson BH, Lindskog S.
    Proteins; 1993 Jan 19; 15(1):80-7. PubMed ID: 8451242
    [Abstract] [Full Text] [Related]

  • 18. The active site structure of Thalassiosira weissflogii carbonic anhydrase 1.
    Cox EH, McLendon GL, Morel FM, Lane TW, Prince RC, Pickering IJ, George GN.
    Biochemistry; 2000 Oct 10; 39(40):12128-30. PubMed ID: 11015190
    [Abstract] [Full Text] [Related]

  • 19. Catalytic Water Oxidation by Iridium-Modified Carbonic Anhydrase.
    Kim MC, Lee SY.
    Chem Asian J; 2018 Feb 02; 13(3):334-341. PubMed ID: 29283512
    [Abstract] [Full Text] [Related]

  • 20. Carbonic anhydrase inhibitors. Inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with Schiff's bases incorporating chromone and aromatic sulfonamide moieties, and their zinc complexes.
    Puccetti L, Fasolis G, Vullo D, Chohan ZH, Scozzafava A, Supuran CT.
    Bioorg Med Chem Lett; 2005 Jun 15; 15(12):3096-101. PubMed ID: 15908204
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.