These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


140 related items for PubMed ID: 27236085

  • 1. Improved spatial accuracy of functional maps in the rat olfactory bulb using supervised machine learning approach.
    Murphy MC, Poplawsky AJ, Vazquez AL, Chan KC, Kim SG, Fukuda M.
    Neuroimage; 2016 Aug 15; 137():1-8. PubMed ID: 27236085
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.
    Yourganov G, Schmah T, Churchill NW, Berman MG, Grady CL, Strother SC.
    Neuroimage; 2014 Aug 01; 96():117-32. PubMed ID: 24705202
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Reproducibility of odor maps by fMRI in rodents.
    Schafer JR, Kida I, Xu F, Rothman DL, Hyder F.
    Neuroimage; 2006 Jul 01; 31(3):1238-46. PubMed ID: 16632382
    [Abstract] [Full Text] [Related]

  • 9. Fast joint reconstruction of dynamic R2* and field maps in functional MRI.
    Olafsson VT, Noll DC, Fessler JA.
    IEEE Trans Med Imaging; 2008 Sep 01; 27(9):1177-88. PubMed ID: 18753040
    [Abstract] [Full Text] [Related]

  • 10. Assessment of spatial BOLD sensitivity variations in fMRI using gradient-echo field maps.
    Mannfolk P, Wirestam R, Nilsson M, van Westen D, Ståhlberg F, Olsrud J.
    Magn Reson Imaging; 2010 Sep 01; 28(7):947-56. PubMed ID: 20573463
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. fMRI visualization of transient activations in the rat olfactory bulb using short odor stimulations.
    Martin C, Grenier D, Thévenet M, Vigouroux M, Bertrand B, Janier M, Ravel N, Litaudon P.
    Neuroimage; 2007 Jul 15; 36(4):1288-93. PubMed ID: 17512755
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Compressed sensing fMRI using gradient-recalled echo and EPI sequences.
    Zong X, Lee J, John Poplawsky A, Kim SG, Ye JC.
    Neuroimage; 2014 May 15; 92():312-21. PubMed ID: 24495813
    [Abstract] [Full Text] [Related]

  • 16. Probing neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: A group level comparison with BOLD fMRI and PET.
    Özbay PS, Warnock G, Rossi C, Kuhn F, Akin B, Pruessmann KP, Nanz D.
    Neuroimage; 2016 Aug 15; 137():52-60. PubMed ID: 27155125
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Spontaneous activity forms a foundation for odor-evoked activation maps in the rat olfactory bulb.
    Thompson GJ, Sanganahalli BG, Baker KL, Herman P, Shepherd GM, Verhagen JV, Hyder F.
    Neuroimage; 2018 May 15; 172():586-596. PubMed ID: 29374582
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Functional imaging of olfaction by CBV fMRI in monkeys: insight into the role of olfactory bulb in habituation.
    Zhao F, Holahan MA, Houghton AK, Hargreaves R, Evelhoch JL, Winkelmann CT, Williams DS.
    Neuroimage; 2015 Feb 01; 106():364-72. PubMed ID: 25498426
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.