These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
134 related items for PubMed ID: 272380
1. The effect of adsorption on the acid production of caries and noncaries-producing streptococci. Berry CW, Henry CA. J Dent Res; 1977 Oct; 56(10):1193-1200. PubMed ID: 272380 [Abstract] [Full Text] [Related]
2. Effect of trace elements on dissolution of hydroxyapatite by cariogenic streptococci. Herbison RJ, Handelman SL. J Dent Res; 1975 Oct; 54(6):1107-14. PubMed ID: 429 [Abstract] [Full Text] [Related]
3. Strain-related acid production by oral streptococci. de Soet JJ, Nyvad B, Kilian M. Caries Res; 2000 Oct; 34(6):486-90. PubMed ID: 11093023 [Abstract] [Full Text] [Related]
4. Degradation and fermentation of fructo-oligosaccharides by oral streptococci. Hartemink R, Quataert MC, van Laere KM, Nout MJ, Rombouts FM. J Appl Bacteriol; 1995 Nov; 79(5):551-7. PubMed ID: 8567492 [Abstract] [Full Text] [Related]
5. Adsorption of lysozyme from human whole saliva by Streptococcus sanguis 903 and other oral microorganisms. Laible NJ, Germaine GR. Infect Immun; 1982 Apr; 36(1):148-59. PubMed ID: 7076291 [Abstract] [Full Text] [Related]
6. [Streptococcus mutans and dental caries: microbiological aspects]. Zucca M, Cenna S, Berzioli S, Gariglio M, Fagnoni V. G Batteriol Virol Immunol; 1990 Apr; 83(1-12):108-17. PubMed ID: 2133318 [Abstract] [Full Text] [Related]
7. Adsorption of steptococcal extracellular polysaccharides by hydroxyapatite. Pearce EI. Arch Oral Biol; 1976 Apr; 21(9):545-9. PubMed ID: 1067804 [No Abstract] [Full Text] [Related]
8. Sucrose metabolism by prominent members of the flora isolated from cariogenic and non-cariogenic dental plaques. Minah GE, Loesche WJ. Infect Immun; 1977 Jul; 17(1):55-61. PubMed ID: 407163 [Abstract] [Full Text] [Related]
9. Relationship among mutans streptococci, "low-pH" bacteria, and lodophilic polysaccharide-producing bacteria in dental plaque and early enamel caries in humans. van Ruyven FO, Lingström P, van Houte J, Kent R. J Dent Res; 2000 Feb; 79(2):778-84. PubMed ID: 10728980 [Abstract] [Full Text] [Related]
10. The conditioning role of saliva in streptococcal attachment to hydroxyapatite surfaces. Abbott A, Hayes ML. J Gen Microbiol; 1984 Apr; 130(4):809-16. PubMed ID: 6736920 [Abstract] [Full Text] [Related]
11. Inhibition of adsorption of oral streptococci to saliva treated hydroxyapatite by chitin derivatives. Sano H, Matsukubo T, Shibasaki K, Itoi H, Takaesu Y. Bull Tokyo Dent Coll; 1991 Feb; 32(1):9-17. PubMed ID: 1668072 [Abstract] [Full Text] [Related]
12. [Biochemical capacity of glucan-producing cariogenic Streptococci from human dental plaque with special reference to their acid-forming capacity]. Ranke E, Ranke B. Dtsch Zahnarztl Z; 1985 Jan; 40(1):52-7. PubMed ID: 3856517 [No Abstract] [Full Text] [Related]
13. Studies on the bacterial components which bind Streptococcus sanguis and Streptococcus mutans to hydroxyapatite. Liljemark WF, Schauer SV. Arch Oral Biol; 1975 Sep; 20(9):609-15. PubMed ID: 241311 [No Abstract] [Full Text] [Related]
15. Comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surfaces. Clark WB, Bammann LL, Gibbons RJ. Infect Immun; 1978 Mar; 19(3):846-53. PubMed ID: 640732 [Abstract] [Full Text] [Related]
16. The effects of basic and acidic synthetic polypeptides on the adherence of the oral bacteria, Streptococcus mutans and Streptococcus sanguis, to hydroxyapatite. Lamberts BL, Pederson ED, Simonson LG. Arch Oral Biol; 1985 Mar; 30(3):295-8. PubMed ID: 2581534 [Abstract] [Full Text] [Related]
17. Novel method for the depletion of cariogenic bacteria using dextranomer microspheres. Mashburn-Warren L, Downey JS, Goodman SD. Mol Oral Microbiol; 2017 Dec; 32(6):475-489. PubMed ID: 28502123 [Abstract] [Full Text] [Related]