These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
850 related items for PubMed ID: 27241695
1. Mechanisms of homeostatic plasticity in the excitatory synapse. Fernandes D, Carvalho AL. J Neurochem; 2016 Dec; 139(6):973-996. PubMed ID: 27241695 [Abstract] [Full Text] [Related]
2. Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca2+-Permeable AMPA Receptors. Sanderson JL, Scott JD, Dell'Acqua ML. J Neurosci; 2018 Mar 14; 38(11):2863-2876. PubMed ID: 29440558 [Abstract] [Full Text] [Related]
3. [Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity]. Le Roux N, Amar M, Fossier P. J Soc Biol; 2008 Mar 14; 202(2):143-60. PubMed ID: 18547512 [Abstract] [Full Text] [Related]
4. Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning. Hsu YT, Li J, Wu D, Südhof TC, Chen L. Proc Natl Acad Sci U S A; 2019 Apr 02; 116(14):7113-7122. PubMed ID: 30782829 [Abstract] [Full Text] [Related]
5. Disruption of NMDAR Function Prevents Normal Experience-Dependent Homeostatic Synaptic Plasticity in Mouse Primary Visual Cortex. Rodriguez G, Mesik L, Gao M, Parkins S, Saha R, Lee HK. J Neurosci; 2019 Sep 25; 39(39):7664-7673. PubMed ID: 31413075 [Abstract] [Full Text] [Related]
6. Homeostatic Plasticity Achieved by Incorporation of Random Fluctuations and Soft-Bounded Hebbian Plasticity in Excitatory Synapses. Matsubara T, Uehara K. Front Neural Circuits; 2016 Sep 25; 10():42. PubMed ID: 27313513 [Abstract] [Full Text] [Related]
7. A Unique Homeostatic Signaling Pathway Links Synaptic Inactivity to Postsynaptic mTORC1. Henry FE, Wang X, Serrano D, Perez AS, Carruthers CJL, Stuenkel EL, Sutton MA. J Neurosci; 2018 Feb 28; 38(9):2207-2225. PubMed ID: 29311141 [Abstract] [Full Text] [Related]
8. LTD, LTP, and the sliding threshold for long-term synaptic plasticity. Stanton PK. Hippocampus; 1996 Feb 28; 6(1):35-42. PubMed ID: 8878740 [Abstract] [Full Text] [Related]
10. Homeostatic plasticity in the CNS: synaptic and intrinsic forms. Desai NS. J Physiol Paris; 2003 Feb 28; 97(4-6):391-402. PubMed ID: 15242651 [Abstract] [Full Text] [Related]
11. Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: long-term potentiation, long-term depression, short-term potentiation and scaling. Lisman J. Philos Trans R Soc Lond B Biol Sci; 2017 Mar 05; 372(1715):. PubMed ID: 28093558 [Abstract] [Full Text] [Related]
12. AMPAR trafficking in synapse maturation and plasticity. Bassani S, Folci A, Zapata J, Passafaro M. Cell Mol Life Sci; 2013 Dec 05; 70(23):4411-30. PubMed ID: 23475111 [Abstract] [Full Text] [Related]
13. Homeostatic plasticity and NMDA receptor trafficking. Pérez-Otaño I, Ehlers MD. Trends Neurosci; 2005 May 05; 28(5):229-38. PubMed ID: 15866197 [Abstract] [Full Text] [Related]
16. Two distinct mechanisms for experience-dependent homeostasis. Bridi MCD, de Pasquale R, Lantz CL, Gu Y, Borrell A, Choi SY, He K, Tran T, Hong SZ, Dykman A, Lee HK, Quinlan EM, Kirkwood A. Nat Neurosci; 2018 Jun 05; 21(6):843-850. PubMed ID: 29760525 [Abstract] [Full Text] [Related]
17. Tuning into diversity of homeostatic synaptic plasticity. Lee KF, Soares C, Béïque JC. Neuropharmacology; 2014 Mar 05; 78():31-7. PubMed ID: 23541721 [Abstract] [Full Text] [Related]