These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
378 related items for PubMed ID: 27241927
1. The E. coli DNA Replication Fork. Lewis JS, Jergic S, Dixon NE. Enzymes; 2016; 39():31-88. PubMed ID: 27241927 [Abstract] [Full Text] [Related]
2. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size. Wu CA, Zechner EL, Marians KJ. J Biol Chem; 1992 Feb 25; 267(6):4030-44. PubMed ID: 1740451 [Abstract] [Full Text] [Related]
3. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. III. A polymerase-primase interaction governs primer size. Zechner EL, Wu CA, Marians KJ. J Biol Chem; 1992 Feb 25; 267(6):4054-63. PubMed ID: 1531480 [Abstract] [Full Text] [Related]
4. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. IV. Reconstitution of an asymmetric, dimeric DNA polymerase III holoenzyme. Wu CA, Zechner EL, Hughes AJ, Franden MA, McHenry CS, Marians KJ. J Biol Chem; 1992 Feb 25; 267(6):4064-73. PubMed ID: 1346785 [Abstract] [Full Text] [Related]
5. A structural view of bacterial DNA replication. Oakley AJ. Protein Sci; 2019 Jun 25; 28(6):990-1004. PubMed ID: 30945375 [Abstract] [Full Text] [Related]
6. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. V. Primase action regulates the cycle of Okazaki fragment synthesis. Wu CA, Zechner EL, Reems JA, McHenry CS, Marians KJ. J Biol Chem; 1992 Feb 25; 267(6):4074-83. PubMed ID: 1740453 [Abstract] [Full Text] [Related]
7. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Tanner NA, Hamdan SM, Jergic S, Loscha KV, Schaeffer PM, Dixon NE, van Oijen AM. Nat Struct Mol Biol; 2008 Feb 25; 15(2):170-6. PubMed ID: 18223657 [Abstract] [Full Text] [Related]
8. Primase couples leading- and lagging-strand DNA synthesis from oriC. Hiasa H, Marians KJ. J Biol Chem; 1994 Feb 25; 269(8):6058-63. PubMed ID: 8119951 [Abstract] [Full Text] [Related]
9. E. coli primase and DNA polymerase III holoenzyme are able to bind concurrently to a primed template during DNA replication. Bogutzki A, Naue N, Litz L, Pich A, Curth U. Sci Rep; 2019 Oct 08; 9(1):14460. PubMed ID: 31595021 [Abstract] [Full Text] [Related]
10. Allosteric regulation of the primase (DnaG) activity by the clamp-loader (tau) in vitro. Chintakayala K, Machón C, Haroniti A, Larson MA, Hinrichs SH, Griep MA, Soultanas P. Mol Microbiol; 2009 Apr 08; 72(2):537-49. PubMed ID: 19415803 [Abstract] [Full Text] [Related]
11. Regulation of bacterial priming and daughter strand synthesis through helicase-primase interactions. Corn JE, Berger JM. Nucleic Acids Res; 2006 Apr 08; 34(15):4082-8. PubMed ID: 16935873 [Abstract] [Full Text] [Related]
12. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. II. Frequency of primer synthesis and efficiency of primer utilization control Okazaki fragment size. Zechner EL, Wu CA, Marians KJ. J Biol Chem; 1992 Feb 25; 267(6):4045-53. PubMed ID: 1740452 [Abstract] [Full Text] [Related]
13. Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin. Fang L, Davey MJ, O'Donnell M. Mol Cell; 1999 Oct 25; 4(4):541-53. PubMed ID: 10549286 [Abstract] [Full Text] [Related]
14. tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork. Kim S, Dallmann HG, McHenry CS, Marians KJ. J Biol Chem; 1996 Aug 30; 271(35):21406-12. PubMed ID: 8702922 [Abstract] [Full Text] [Related]
15. Replisome assembly reveals the basis for asymmetric function in leading and lagging strand replication. Yuzhakov A, Turner J, O'Donnell M. Cell; 1996 Sep 20; 86(6):877-86. PubMed ID: 8808623 [Abstract] [Full Text] [Related]
16. Characterization of a triple DNA polymerase replisome. McInerney P, Johnson A, Katz F, O'Donnell M. Mol Cell; 2007 Aug 17; 27(4):527-38. PubMed ID: 17707226 [Abstract] [Full Text] [Related]
18. Initiation of bidirectional replication at the chromosomal origin is directed by the interaction between helicase and primase. Hiasa H, Marians KJ. J Biol Chem; 1999 Sep 17; 274(38):27244-8. PubMed ID: 10480943 [Abstract] [Full Text] [Related]
19. Helicase action of dnaB protein during replication from the Escherichia coli chromosomal origin in vitro. Baker TA, Funnell BE, Kornberg A. J Biol Chem; 1987 May 15; 262(14):6877-85. PubMed ID: 3032979 [Abstract] [Full Text] [Related]
20. DNA Polymerase III, but Not Polymerase IV, Must Be Bound to a τ-Containing DnaX Complex to Enable Exchange into Replication Forks. Yuan Q, Dohrmann PR, Sutton MD, McHenry CS. J Biol Chem; 2016 May 27; 291(22):11727-35. PubMed ID: 27056333 [Abstract] [Full Text] [Related] Page: [Next] [New Search]