These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


204 related items for PubMed ID: 27245230

  • 1. Role of nucleus accumbens μ opioid receptors in the effects of morphine on ERK1/2 phosphorylation.
    Rosas M, Porru S, Fenu S, Ruiu S, Peana AT, Papale A, Brambilla R, Di Chiara G, Acquas E.
    Psychopharmacology (Berl); 2016 Aug; 233(15-16):2943-54. PubMed ID: 27245230
    [Abstract] [Full Text] [Related]

  • 2. Effects of morphine on place conditioning and ERK1/2 phosphorylation in the nucleus accumbens of psychogenetically selected Roman low- and high-avoidance rats.
    Rosas M, Porru S, Sabariego M, Piludu MA, Giorgi O, Corda MG, Acquas E.
    Psychopharmacology (Berl); 2018 Jan; 235(1):59-69. PubMed ID: 28971231
    [Abstract] [Full Text] [Related]

  • 3. Suppression of natural killer cell activity by morphine is mediated by the nucleus accumbens shell.
    Saurer TB, Carrigan KA, Ijames SG, Lysle DT.
    J Neuroimmunol; 2006 Apr; 173(1-2):3-11. PubMed ID: 16364456
    [Abstract] [Full Text] [Related]

  • 4. Systemic morphine-induced Fos protein in the rat striatum and nucleus accumbens is regulated by mu opioid receptors in the substantia nigra and ventral tegmental area.
    Bontempi B, Sharp FR.
    J Neurosci; 1997 Nov 01; 17(21):8596-612. PubMed ID: 9334431
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Morphine acutely and persistently attenuates nonvesicular GABA release in rat nucleus accumbens.
    Schoffelmeer AN, Wardeh G, Vanderschuren LJ.
    Synapse; 2001 Nov 01; 42(2):87-94. PubMed ID: 11574945
    [Abstract] [Full Text] [Related]

  • 8. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats.
    Haberny SL, Carr KD.
    Neuroscience; 2005 Nov 01; 132(4):1035-43. PubMed ID: 15857708
    [Abstract] [Full Text] [Related]

  • 9. Chronic food restriction increases D-1 dopamine receptor agonist-induced phosphorylation of extracellular signal-regulated kinase 1/2 and cyclic AMP response element-binding protein in caudate-putamen and nucleus accumbens.
    Haberny SL, Berman Y, Meller E, Carr KD.
    Neuroscience; 2004 Nov 01; 125(1):289-98. PubMed ID: 15051167
    [Abstract] [Full Text] [Related]

  • 10. Involvement of D1/D2 dopamine receptors within the nucleus accumbens and ventral tegmental area in the development of sensitization to antinociceptive effect of morphine.
    Reisi Z, Bani-Ardalan M, Zarepour L, Haghparast A.
    Pharmacol Biochem Behav; 2014 Mar 01; 118():16-21. PubMed ID: 24418216
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Involvement of dopamine D1 and D2 receptors in the nucleus accumbens core and shell in inhibitory response control.
    Pattij T, Janssen MC, Vanderschuren LJ, Schoffelmeer AN, van Gaalen MM.
    Psychopharmacology (Berl); 2007 Apr 01; 191(3):587-98. PubMed ID: 16972104
    [Abstract] [Full Text] [Related]

  • 15. (+)-Morphine attenuates the (-)-morphine-produced conditioned place preference and the mu-opioid receptor-mediated dopamine increase in the posterior nucleus accumbens of the rat.
    Terashvili M, Wu HE, Schwasinger ET, Hung KC, Hong JS, Tseng LF.
    Eur J Pharmacol; 2008 Jun 10; 587(1-3):147-54. PubMed ID: 18448094
    [Abstract] [Full Text] [Related]

  • 16. Chronic administration of morphine is associated with a decrease in surface AMPA GluR1 receptor subunit in dopamine D1 receptor expressing neurons in the shell and non-D1 receptor expressing neurons in the core of the rat nucleus accumbens.
    Glass MJ, Lane DA, Colago EE, Chan J, Schlussman SD, Zhou Y, Kreek MJ, Pickel VM.
    Exp Neurol; 2008 Apr 10; 210(2):750-61. PubMed ID: 18294632
    [Abstract] [Full Text] [Related]

  • 17. Heteromers of μ opioid and dopamine D1 receptors modulate opioid-induced locomotor sensitization in a dopamine-independent manner.
    Tao YM, Yu C, Wang WS, Hou YY, Xu XJ, Chi ZQ, Ding YQ, Wang YJ, Liu JG.
    Br J Pharmacol; 2017 Sep 10; 174(17):2842-2861. PubMed ID: 28608532
    [Abstract] [Full Text] [Related]

  • 18. Morphine-conditioned single-trial place preference: role of nucleus accumbens shell dopamine receptors in acquisition, but not expression.
    Fenu S, Spina L, Rivas E, Longoni R, Di Chiara G.
    Psychopharmacology (Berl); 2006 Aug 10; 187(2):143-53. PubMed ID: 16724186
    [Abstract] [Full Text] [Related]

  • 19. Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors.
    Westin JE, Vercammen L, Strome EM, Konradi C, Cenci MA.
    Biol Psychiatry; 2007 Oct 01; 62(7):800-10. PubMed ID: 17662258
    [Abstract] [Full Text] [Related]

  • 20. Inputs from the basolateral amygdala to the nucleus accumbens shell control opiate reward magnitude via differential dopamine D1 or D2 receptor transmission.
    Lintas A, Chi N, Lauzon NM, Bishop SF, Sun N, Tan H, Laviolette SR.
    Eur J Neurosci; 2012 Jan 01; 35(2):279-90. PubMed ID: 22236063
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.