These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Cerebral intracellular changes during supercarbia: an in vivo 31P nuclear magnetic resonance study in rats. Litt L, González-Méndez R, Severinghaus JW, Hamilton WK, Shuleshko J, Murphy-Boesch J, James TL. J Cereb Blood Flow Metab; 1985 Dec; 5(4):537-44. PubMed ID: 4055925 [Abstract] [Full Text] [Related]
4. Bicarbonate conservation during incomplete cerebral ischemia with superimposed hypercapnia. Hurn PD, Koehler RC, Norris SE, Schwentker AE, Traystman RJ. Am J Physiol; 1991 Sep; 261(3 Pt 2):H853-9. PubMed ID: 1909505 [Abstract] [Full Text] [Related]
5. Sequential in vivo measurement of cerebral intracellular metabolites with phosphorus-31 magnetic resonance spectroscopy during global cerebral ischemia and reperfusion in rats. Andrews BT, Weinstein PR, Keniry M, Pereira B. Neurosurgery; 1987 Nov; 21(5):699-708. PubMed ID: 3696405 [Abstract] [Full Text] [Related]
6. Cerebral metabolite dynamics during temporary complete ischemia in rats monitored by time-shared 1H and 31P NMR spectroscopy. Chang LH, Shirane R, Weinstein PR, James TL. Magn Reson Med; 1990 Jan; 13(1):6-13. PubMed ID: 2319935 [Abstract] [Full Text] [Related]
7. Tolerance of low intracellular pH during hypercapnia by rat cortical brain slices: A 31P/1H NMR study. Espanol MT, Litt L, Yang GY, Chang LH, Chan PH, James TL, Weinstein PR. J Neurochem; 1992 Nov; 59(5):1820-8. PubMed ID: 1402924 [Abstract] [Full Text] [Related]
8. Stability of brain intracellular lactate and 31P-metabolite levels at reduced intracellular pH during prolonged hypercapnia in rats. Cohen Y, Chang LH, Litt L, Kim F, Severinghaus JW, Weinstein PR, Davis RL, Germano I, James TL. J Cereb Blood Flow Metab; 1990 Mar; 10(2):277-84. PubMed ID: 2303543 [Abstract] [Full Text] [Related]
9. In vivo microdialysis of 2-deoxyglucose 6-phosphate into brain: a novel method for the measurement of interstitial pH using 31P-NMR. Kintner DB, Anderson ME, Sailor KA, Dienel G, Fitzpatrick JH, Gilboe DD. J Neurochem; 1999 Jan; 72(1):405-12. PubMed ID: 9886094 [Abstract] [Full Text] [Related]
10. High energy phosphate metabolism in experimental permanent focal cerebral ischemia: an in vivo 31P magnetic resonance spectroscopy study. Germano IM, Pitts LH, Berry I, De Armond SJ. J Cereb Blood Flow Metab; 1988 Feb; 8(1):24-31. PubMed ID: 3339105 [Abstract] [Full Text] [Related]
11. Effects of mild hypercapnia on somatosensory evoked potentials in experimental cerebral ischemia. Nakagawa Y, Ohtsuka K, Tsuru M, Nakamura N. Stroke; 1984 Feb; 15(2):275-8. PubMed ID: 6422587 [Abstract] [Full Text] [Related]
12. In vivo studies of energy metabolism in experimental cerebral ischemia using topical magnetic resonance. Changes in 31P-nuclear magnetic resonance spectra compared with electroencephalograms and regional cerebral blood flow. Horikawa Y, Naruse S, Hirakawa K, Tanaka C, Nishikawa H, Watari H. J Cereb Blood Flow Metab; 1985 Jun; 5(2):235-40. PubMed ID: 3988822 [Abstract] [Full Text] [Related]
13. Tolerance of low cerebral intracellular pH in rats during hyperbaric hypercapnia. Xu Y, Cohen Y, Litt L, Chang LH, James TL. Stroke; 1991 Oct; 22(10):1303-8. PubMed ID: 1926243 [Abstract] [Full Text] [Related]
14. Metabolic changes during experimental cerebral ischemia in hyperglycemic rats, observed by 31P and 1H magnetic resonance spectroscopy. Bolas NM, Rajagopalan B, Mitsumori F, Radda GK. Stroke; 1988 May; 19(5):608-14. PubMed ID: 3363594 [Abstract] [Full Text] [Related]
15. Assessment of postischemic cerebral energy metabolism in cat by 31P NMR: the cumulative effects of secondary hypoxia and ischemia. Alger JR, Brunetti A, Nagashima G, Hossmann KA. J Cereb Blood Flow Metab; 1989 Aug; 9(4):506-14. PubMed ID: 2738116 [Abstract] [Full Text] [Related]
16. Hyperglycemia in global cerebral ischemia and reperfusion: a 31-phosphorous NMR spectroscopy study in rats. Haraldseth O, Nygård O, Grønås T, Southon T, Gisvold SE, Unsgård G. Acta Anaesthesiol Scand; 1992 Jan; 36(1):25-30. PubMed ID: 1539475 [Abstract] [Full Text] [Related]
17. Evaluation of potential effectors of agonal glycolytic rate in developing brain measured in vivo by 31P and 1H nuclear magnetic resonance spectroscopy. Corbett RJ, Sterett R, Laptook AR. J Neurochem; 1995 Jan; 64(1):322-31. PubMed ID: 7798928 [Abstract] [Full Text] [Related]
18. [In vivo 31P NMR studies on cerebral infarction using topical magnetic resonance (TMR)--time course of high energy phosphorus compounds content in ischemic and recirculated brain]. Naruse S, Horikawa Y, Tanaka C, Hirakawa K, Nishikawa H, Koizuka I, Takada S, Watari H. No To Shinkei; 1983 Jun; 35(6):603-9. PubMed ID: 6626382 [No Abstract] [Full Text] [Related]
19. Effects of clentiazem on cerebral ischemia induced by carotid artery occlusion in stroke-prone spontaneously hypertensive rats. Kikkawa K, Yamauchi R, Suzuki T, Banno K, Murata S, Tetsuka T, Nagao T. Stroke; 1994 Feb; 25(2):474-80. PubMed ID: 8303759 [Abstract] [Full Text] [Related]
20. Effects of nimodipine on EEG and 31P-NMR spectra during and after incomplete forebrain ischemia in the rat. Deutz NE, Chamuleau RA, Bovée WM, Van der Werf AJ. Eur J Pharmacol; 1986 Jun 24; 125(3):429-35. PubMed ID: 3732400 [Abstract] [Full Text] [Related] Page: [Next] [New Search]