These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
186 related items for PubMed ID: 27246823
1. Pseudomonas aeruginosa Cell Membrane Protein Expression from Phenotypically Diverse Cystic Fibrosis Isolates Demonstrates Host-Specific Adaptations. Kamath KS, Pascovici D, Penesyan A, Goel A, Venkatakrishnan V, Paulsen IT, Packer NH, Molloy MP. J Proteome Res; 2016 Jul 01; 15(7):2152-63. PubMed ID: 27246823 [Abstract] [Full Text] [Related]
2. Proteomics of Pseudomonas aeruginosa Australian epidemic strain 1 (AES-1) cultured under conditions mimicking the cystic fibrosis lung reveals increased iron acquisition via the siderophore pyochelin. Hare NJ, Soe CZ, Rose B, Harbour C, Codd R, Manos J, Cordwell SJ. J Proteome Res; 2012 Feb 03; 11(2):776-95. PubMed ID: 22054071 [Abstract] [Full Text] [Related]
3. Genetically and Phenotypically Distinct Pseudomonas aeruginosa Cystic Fibrosis Isolates Share a Core Proteomic Signature. Penesyan A, Kumar SS, Kamath K, Shathili AM, Venkatakrishnan V, Krisp C, Packer NH, Molloy MP, Paulsen IT. PLoS One; 2015 Feb 03; 10(10):e0138527. PubMed ID: 26431321 [Abstract] [Full Text] [Related]
4. Secretome of transmissible Pseudomonas aeruginosa AES-1R grown in a cystic fibrosis lung-like environment. Scott NE, Hare NJ, White MY, Manos J, Cordwell SJ. J Proteome Res; 2013 Dec 06; 12(12):5357-69. PubMed ID: 23991618 [Abstract] [Full Text] [Related]
5. Membrane phospholipid composition of Pseudomonas aeruginosa grown in a cystic fibrosis mucus-mimicking medium. Deschamps E, Schaumann A, Schmitz-Afonso I, Afonso C, Dé E, Loutelier-Bourhis C, Alexandre S. Biochim Biophys Acta Biomembr; 2021 Jan 01; 1863(1):183482. PubMed ID: 33002450 [Abstract] [Full Text] [Related]
7. Adaptations of Pseudomonas aeruginosa to the cystic fibrosis lung environment can include deregulation of zwf, encoding glucose-6-phosphate dehydrogenase. Silo-Suh L, Suh SJ, Phibbs PV, Ohman DE. J Bacteriol; 2005 Nov 06; 187(22):7561-8. PubMed ID: 16267280 [Abstract] [Full Text] [Related]
8. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. Palmer KL, Aye LM, Whiteley M. J Bacteriol; 2007 Nov 06; 189(22):8079-87. PubMed ID: 17873029 [Abstract] [Full Text] [Related]
9. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. Hogardt M, Heesemann J. Curr Top Microbiol Immunol; 2013 Nov 06; 358():91-118. PubMed ID: 22311171 [Abstract] [Full Text] [Related]
10. Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains. Varga JJ, Barbier M, Mulet X, Bielecki P, Bartell JA, Owings JP, Martinez-Ramos I, Hittle LE, Davis MR, Damron FH, Liechti GW, Puchałka J, dos Santos VA, Ernst RK, Papin JA, Albertí S, Oliver A, Goldberg JB. BMC Genomics; 2015 Oct 30; 16():883. PubMed ID: 26519161 [Abstract] [Full Text] [Related]
11. Proteomic profiling of Pseudomonas aeruginosa AES-1R, PAO1 and PA14 reveals potential virulence determinants associated with a transmissible cystic fibrosis-associated strain. Hare NJ, Solis N, Harmer C, Marzook NB, Rose B, Harbour C, Crossett B, Manos J, Cordwell SJ. BMC Microbiol; 2012 Jan 22; 12():16. PubMed ID: 22264352 [Abstract] [Full Text] [Related]
12. Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane. Casabona MG, Vandenbrouck Y, Attree I, Couté Y. Proteomics; 2013 Aug 22; 13(16):2419-23. PubMed ID: 23744604 [Abstract] [Full Text] [Related]
13. Genotypic and phenotypic relatedness of Pseudomonas aeruginosa isolates among the major cystic fibrosis patient cohort in Italy. Cigana C, Melotti P, Baldan R, Pedretti E, Pintani E, Iansa P, De Fino I, Favari F, Bergamini G, Tridello G, Cirillo DM, Assael BM, Bragonzi A. BMC Microbiol; 2016 Jul 11; 16(1):142. PubMed ID: 27400750 [Abstract] [Full Text] [Related]
14. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M. Proc Natl Acad Sci U S A; 2015 Mar 31; 112(13):4110-5. PubMed ID: 25775563 [Abstract] [Full Text] [Related]
16. Proteome analysis reveals adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung environment. Sriramulu DD, Nimtz M, Romling U. Proteomics; 2005 Sep 31; 5(14):3712-21. PubMed ID: 16097035 [Abstract] [Full Text] [Related]
17. Comparative evaluation of the effect of different growth media on in vitro sensitivity to azithromycin in multi-drug resistant Pseudomonas aeruginosa isolated from cystic fibrosis patients. Sörensen M, Khakimov B, Nurjadi D, Boutin S, Yi B, Dalpke AH, Eigenbrod T. Antimicrob Resist Infect Control; 2020 Dec 09; 9(1):197. PubMed ID: 33298147 [Abstract] [Full Text] [Related]
18. Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. Hanna SL, Sherman NE, Kinter MT, Goldberg JB. Microbiology (Reading); 2000 Oct 09; 146 ( Pt 10)():2495-2508. PubMed ID: 11021925 [Abstract] [Full Text] [Related]
20. Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Guina T, Purvine SO, Yi EC, Eng J, Goodlett DR, Aebersold R, Miller SI. Proc Natl Acad Sci U S A; 2003 Mar 04; 100(5):2771-6. PubMed ID: 12601166 [Abstract] [Full Text] [Related] Page: [Next] [New Search]