These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


129 related items for PubMed ID: 27252885

  • 1. Degradation characteristics, cell viability and host tissue responses of PDLLA-based scaffold with PRGD and β-TCP nanoparticles incorporation.
    Yi J, Xiong F, Li B, Chen H, Yin Y, Dai H, Li S.
    Regen Biomater; 2016 Sep; 3(3):159-66. PubMed ID: 27252885
    [Abstract] [Full Text] [Related]

  • 2. PDLLA/PRGD/β-TCP conduits build the neurotrophin-rich microenvironment suppressing the oxidative stress and promoting the sciatic nerve regeneration.
    Qiu T, Yin Y, Li B, Xie L, Yan Q, Dai H, Wang X, Li S.
    J Biomed Mater Res A; 2014 Oct; 102(10):3734-43. PubMed ID: 24408878
    [Abstract] [Full Text] [Related]

  • 3. Dog tibial nerve regeneration across a 30-mm defect bridged by a PRGD/PDLLA/β-TCP/NGF sustained-release conduit.
    Huang J, Xiang J, Yan Q, Li S, Song L, Cai X.
    J Reconstr Microsurg; 2013 Feb; 29(2):77-87. PubMed ID: 23203315
    [Abstract] [Full Text] [Related]

  • 4. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin.
    Xie XH, Wang XL, Zhang G, He YX, Wang XH, Liu Z, He K, Peng J, Leng Y, Qin L.
    Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954
    [Abstract] [Full Text] [Related]

  • 5. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T, Miyaji H, Otani K, Inoue K, Nakane K, Nishimura H, Ibara A, Shimada A, Ogawa K, Nishida E, Sugaya T, Sun L, Fugetsu B, Kawanami M.
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [Abstract] [Full Text] [Related]

  • 6. Promotion of peripheral nerve regeneration and prevention of neuroma formation by PRGD/PDLLA/β-TCP conduit: report of two cases.
    Yin Y, Li B, Yan Q, Dai H, Wang X, Huang J, Li S.
    Regen Biomater; 2015 Jun; 2(2):119-24. PubMed ID: 26816636
    [Abstract] [Full Text] [Related]

  • 7. Fabrication of a Novel Beta Tricalcium Phosphate/Sodium Alginate/Poly(D,L-lactic acid) Composite Microsphere and Its Drug Releasing Property.
    Liu X, Zhang Y, Xiong K, Yan M.
    J Nanosci Nanotechnol; 2018 Jun 01; 18(6):3844-3849. PubMed ID: 29442717
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study.
    Chen SH, Wang XL, Xie XH, Zheng LZ, Yao D, Wang DP, Leng Y, Zhang G, Qin L.
    Acta Biomater; 2012 Aug 01; 8(8):3128-37. PubMed ID: 22543006
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation.
    Lin FH, Chen TM, Lin CP, Lee CJ.
    Artif Organs; 1999 Feb 01; 23(2):186-94. PubMed ID: 10027889
    [Abstract] [Full Text] [Related]

  • 13. [Biological evaluation of three-dimensional printed co-poly lactic acid/glycolic acid/tri-calcium phosphate scaffold for bone reconstruction].
    Li SY, Zhou M, Lai YX, Geng YM, Cao SS, Chen XM.
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Nov 09; 51(11):661-666. PubMed ID: 27806758
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells.
    McCullen SD, Zhu Y, Bernacki SH, Narayan RJ, Pourdeyhimi B, Gorga RE, Loboa EG.
    Biomed Mater; 2009 Jun 09; 4(3):035002. PubMed ID: 19390143
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application.
    Maji K, Dasgupta S, Pramanik K, Bissoyi A.
    Mater Sci Eng C Mater Biol Appl; 2018 May 01; 86():83-94. PubMed ID: 29525100
    [Abstract] [Full Text] [Related]

  • 18. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin.
    Xie XH, Wang XL, Zhang G, He YX, Leng Y, Tang TT, Pan X, Qin L.
    J Tissue Eng Regen Med; 2015 Aug 01; 9(8):961-72. PubMed ID: 23255530
    [Abstract] [Full Text] [Related]

  • 19. A comparative study on agarose acetate and PDLLA scaffold for rabbit femur defect regeneration.
    Zhao R, Xu Z, Li B, Chen T, Mei N, Wang C, Zhou Z, You L, Wu C, Wang X, Tang S.
    Biomed Mater; 2019 Sep 20; 14(6):065007. PubMed ID: 31422950
    [Abstract] [Full Text] [Related]

  • 20. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold.
    Hao W, Hu YY, Wei YY, Pang L, Lv R, Bai JP, Xiong Z, Jiang M.
    Cells Tissues Organs; 2008 Sep 20; 187(2):89-102. PubMed ID: 17938566
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.