These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


200 related items for PubMed ID: 27259944

  • 21. Visualization of Live Cochlear Stereocilia at a Nanoscale Resolution Using Hopping Probe Ion Conductance Microscopy.
    Vélez-Ortega AC, Frolenkov GI.
    Methods Mol Biol; 2016; 1427():203-21. PubMed ID: 27259929
    [Abstract] [Full Text] [Related]

  • 22. Fast recovery of disrupted tip links induced by mechanical displacement of hair bundles.
    Alonso RG, Tobin M, Martin P, Hudspeth AJ.
    Proc Natl Acad Sci U S A; 2020 Dec 01; 117(48):30722-30727. PubMed ID: 33199645
    [Abstract] [Full Text] [Related]

  • 23. Auditory and vestibular hair cell stereocilia: relationship between functionality and inner ear disease.
    Ciuman RR.
    J Laryngol Otol; 2011 Oct 01; 125(10):991-1003. PubMed ID: 21774850
    [Abstract] [Full Text] [Related]

  • 24. Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells.
    Corns LF, Johnson SL, Kros CJ, Marcotti W.
    Proc Natl Acad Sci U S A; 2014 Oct 14; 111(41):14918-23. PubMed ID: 25228765
    [Abstract] [Full Text] [Related]

  • 25. Kinematic analysis of shear displacement as a means for operating mechanotransduction channels in the contact region between adjacent stereocilia of mammalian cochlear hair cells.
    Furness DN, Zetes DE, Hackney CM, Steele CR.
    Proc Biol Sci; 1997 Jan 22; 264(1378):45-51. PubMed ID: 9061959
    [Abstract] [Full Text] [Related]

  • 26. Stereocilia Rootlets: Actin-Based Structures That Are Essential for Structural Stability of the Hair Bundle.
    Pacentine I, Chatterjee P, Barr-Gillespie PG.
    Int J Mol Sci; 2020 Jan 03; 21(1):. PubMed ID: 31947734
    [Abstract] [Full Text] [Related]

  • 27. Coherent motion of stereocilia assures the concerted gating of hair-cell transduction channels.
    Kozlov AS, Risler T, Hudspeth AJ.
    Nat Neurosci; 2007 Jan 03; 10(1):87-92. PubMed ID: 17173047
    [Abstract] [Full Text] [Related]

  • 28. The physical basis of active mechanosensitivity by the hair-cell bundle.
    Barral J, Martin P.
    Curr Opin Otolaryngol Head Neck Surg; 2011 Oct 03; 19(5):369-75. PubMed ID: 21825996
    [Abstract] [Full Text] [Related]

  • 29. Amplitude death of coupled hair bundles with stochastic channel noise.
    Kim KJ, Ahn KH.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr 03; 89(4):042703. PubMed ID: 24827274
    [Abstract] [Full Text] [Related]

  • 30. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells.
    Ricci AJ, Crawford AC, Fettiplace R.
    J Neurosci; 2000 Oct 01; 20(19):7131-42. PubMed ID: 11007868
    [Abstract] [Full Text] [Related]

  • 31. Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea.
    Kros CJ, Rüsch A, Richardson GP.
    Proc Biol Sci; 1992 Aug 22; 249(1325):185-93. PubMed ID: 1280836
    [Abstract] [Full Text] [Related]

  • 32. Mechanotransduction in mammalian sensory hair cells.
    Caprara GA, Peng AW.
    Mol Cell Neurosci; 2022 May 22; 120():103706. PubMed ID: 35218890
    [Abstract] [Full Text] [Related]

  • 33. Class III myosins shape the auditory hair bundles by limiting microvilli and stereocilia growth.
    Lelli A, Michel V, Boutet de Monvel J, Cortese M, Bosch-Grau M, Aghaie A, Perfettini I, Dupont T, Avan P, El-Amraoui A, Petit C.
    J Cell Biol; 2016 Jan 18; 212(2):231-44. PubMed ID: 26754646
    [Abstract] [Full Text] [Related]

  • 34. A model for the mechanics of the stereociliar bundle on acousticolateral hair cells.
    Pickles JO.
    Hear Res; 1993 Aug 18; 68(2):159-72. PubMed ID: 8407602
    [Abstract] [Full Text] [Related]

  • 35. Adaptation Independent Modulation of Auditory Hair Cell Mechanotransduction Channel Open Probability Implicates a Role for the Lipid Bilayer.
    Peng AW, Gnanasambandam R, Sachs F, Ricci AJ.
    J Neurosci; 2016 Mar 09; 36(10):2945-56. PubMed ID: 26961949
    [Abstract] [Full Text] [Related]

  • 36. Mechanosensory hair cells express two molecularly distinct mechanotransduction channels.
    Wu Z, Grillet N, Zhao B, Cunningham C, Harkins-Perry S, Coste B, Ranade S, Zebarjadi N, Beurg M, Fettiplace R, Patapoutian A, Mueller U.
    Nat Neurosci; 2017 Jan 09; 20(1):24-33. PubMed ID: 27893727
    [Abstract] [Full Text] [Related]

  • 37. Mechanotransduction current is essential for stability of the transducing stereocilia in mammalian auditory hair cells.
    Vélez-Ortega AC, Freeman MJ, Indzhykulian AA, Grossheim JM, Frolenkov GI.
    Elife; 2017 Mar 28; 6():. PubMed ID: 28350294
    [Abstract] [Full Text] [Related]

  • 38. Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell.
    Howard J, Hudspeth AJ.
    Proc Natl Acad Sci U S A; 1987 May 28; 84(9):3064-8. PubMed ID: 3495007
    [Abstract] [Full Text] [Related]

  • 39. CIB2 interacts with TMC1 and TMC2 and is essential for mechanotransduction in auditory hair cells.
    Giese APJ, Tang YQ, Sinha GP, Bowl MR, Goldring AC, Parker A, Freeman MJ, Brown SDM, Riazuddin S, Fettiplace R, Schafer WR, Frolenkov GI, Ahmed ZM.
    Nat Commun; 2017 Jun 29; 8(1):43. PubMed ID: 28663585
    [Abstract] [Full Text] [Related]

  • 40. Actin filaments as the fast pathways for calcium ions involved in auditory processes.
    Sataric MV, Sekulic DL, Sataric BM.
    J Biosci; 2015 Sep 29; 40(3):549-59. PubMed ID: 26333401
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.