These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
178 related items for PubMed ID: 27277814
1. Lectin binding studies on a glycopolymer brush flow-through biosensor by localized surface plasmon resonance. Rosencrantz RR, Nguyen VH, Park H, Schulte C, Böker A, Schnakenberg U, Elling L. Anal Bioanal Chem; 2016 Aug; 408(20):5633-40. PubMed ID: 27277814 [Abstract] [Full Text] [Related]
2. Carbohydrate immobilized on a dendrimer-coated colloidal gold surface for fabrication of a lectin-sensing device based on localized surface plasmon resonance spectroscopy. Ogiso M, Kobayashi J, Imai T, Matsuoka K, Itoh M, Imamura T, Okada T, Miura H, Nishiyama T, Hatanaka K, Minoura N. Biosens Bioelectron; 2013 Mar 15; 41():465-70. PubMed ID: 23036773 [Abstract] [Full Text] [Related]
3. Evaluating the Thickness of Multivalent Glycopolymer Brushes for Lectin Binding. Lazar J, Park H, Rosencrantz RR, Böker A, Elling L, Schnakenberg U. Macromol Rapid Commun; 2015 Aug 15; 36(16):1472-8. PubMed ID: 26096302 [Abstract] [Full Text] [Related]
4. A novel label-free multi-throughput optical biosensor based on localized surface plasmon resonance. Huang H, He C, Zeng Y, Xia X, Yu X, Yi P, Chen Z. Biosens Bioelectron; 2009 Mar 15; 24(7):2255-9. PubMed ID: 19042120 [Abstract] [Full Text] [Related]
5. Kinetic study on the binding of lectin to mannose residues in a polymer brush. Kitano H, Takahashi Y, Mizukami K, Matsuura K. Colloids Surf B Biointerfaces; 2009 Apr 01; 70(1):91-7. PubMed ID: 19152782 [Abstract] [Full Text] [Related]
6. Glycopolymer brushes for specific lectin binding by controlled multivalent presentation of N-acetyllactosamine glycan oligomers. Park H, Rosencrantz RR, Elling L, Böker A. Macromol Rapid Commun; 2015 Jan 01; 36(1):45-54. PubMed ID: 25354386 [Abstract] [Full Text] [Related]
7. Identification of a ligand for tumor necrosis factor receptor from Chinese herbs by combination of surface plasmon resonance biosensor and UPLC-MS. Cao Y, Li YH, Lv DY, Chen XF, Chen LD, Zhu ZY, Chai YF, Zhang JP. Anal Bioanal Chem; 2016 Jul 01; 408(19):5359-67. PubMed ID: 27225174 [Abstract] [Full Text] [Related]
8. Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays. Zhang D, Lu Y, Jiang J, Zhang Q, Yao Y, Wang P, Chen B, Cheng Q, Liu GL, Liu Q. Biosens Bioelectron; 2015 May 15; 67():237-42. PubMed ID: 25172029 [Abstract] [Full Text] [Related]
9. Simultaneous Electrochemical Impedance Spectroscopy and Localized Surface Plasmon Resonance in a Microfluidic Chip: New Insights into the Spatial Origin of the Signal. Lazar J, Rosencrantz RR, Elling L, Schnakenberg U. Anal Chem; 2016 Oct 04; 88(19):9590-9596. PubMed ID: 27604047 [Abstract] [Full Text] [Related]
10. Comparison of performance parameters for conventional and localized surface plasmon resonance graphene biosensors. Islam MS, Kouzani AZ, Dai XJ, Michalski WP, Gholamhosseini H. Annu Int Conf IEEE Eng Med Biol Soc; 2011 Oct 04; 2011():1851-4. PubMed ID: 22254690 [Abstract] [Full Text] [Related]
11. Diagnosis of Epstein-Barr virus infection in clinical serum samples by an SPR biosensor assay. Riedel T, Rodriguez-Emmenegger C, de los Santos Pereira A, Bědajánková A, Jinoch P, Boltovets PM, Brynda E. Biosens Bioelectron; 2014 May 15; 55():278-84. PubMed ID: 24389391 [Abstract] [Full Text] [Related]
12. Glycopolymer brushes for the affinity adsorption of RCA120: effects of thickness, grafting density, and epitope density. Meng XL, Fang Y, Wan LS, Huang XJ, Xu ZK. Langmuir; 2012 Sep 25; 28(38):13616-23. PubMed ID: 22950871 [Abstract] [Full Text] [Related]
14. Localized surface plasmon resonance biosensor integrated with microfluidic chip. Huang C, Bonroy K, Reekmans G, Laureyn W, Verhaegen K, De Vlaminck I, Lagae L, Borghs G. Biomed Microdevices; 2009 Aug 25; 11(4):893-901. PubMed ID: 19353272 [Abstract] [Full Text] [Related]
15. Nanoplasmonic Biosensor Using Localized Surface Plasmon Resonance Spectroscopy for Biochemical Detection. Zhang D, Zhang Q, Lu Y, Yao Y, Li S, Liu Q. Methods Mol Biol; 2017 Aug 25; 1571():89-107. PubMed ID: 28281251 [Abstract] [Full Text] [Related]
16. Modulation of Multivalent Protein Binding on Surfaces by Glycopolymer Brush Chemistry. Yu K, Creagh AL, Haynes CA, Kizhakkedathu JN. Methods Mol Biol; 2016 Aug 25; 1367():183-93. PubMed ID: 26537474 [Abstract] [Full Text] [Related]
17. Label-free optical biosensor based on localized surface plasmon resonance of twin-linked gold nanoparticles electrodeposited on ITO glass. Deng J, Song Y, Wang Y, Di J. Biosens Bioelectron; 2010 Oct 15; 26(2):615-9. PubMed ID: 20675116 [Abstract] [Full Text] [Related]
18. Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor. Vaisocherová H, Šípová H, Víšová I, Bocková M, Špringer T, Ermini ML, Song X, Krejčík Z, Chrastinová L, Pastva O, Pimková K, Dostálová Merkerová M, Dyr JE, Homola J. Biosens Bioelectron; 2015 Aug 15; 70():226-31. PubMed ID: 25829219 [Abstract] [Full Text] [Related]
19. A label-free biosensor based on gold nanoshell monolayers for monitoring biomolecular interactions in diluted whole blood. Wang Y, Qian W, Tan Y, Ding S. Biosens Bioelectron; 2008 Feb 28; 23(7):1166-70. PubMed ID: 18078744 [Abstract] [Full Text] [Related]
20. Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy. Chamanzar M, Xia Z, Yegnanarayanan S, Adibi A. Opt Express; 2013 Dec 30; 21(26):32086-98. PubMed ID: 24514803 [Abstract] [Full Text] [Related] Page: [Next] [New Search]