These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
277 related items for PubMed ID: 27287879
1. Bcl11b/Ctip2 is required for development of lingual papillae in mice. Nishiguchi Y, Ohmoto M, Koki J, Enomoto T, Kominami R, Matsumoto I, Hirota J. Dev Biol; 2016 Aug 01; 416(1):98-110. PubMed ID: 27287879 [Abstract] [Full Text] [Related]
2. Study by scanning electron microscopy of the morphogenesis of three types of lingual papilla in the rat. Iwasaki S, Yoshizawa H, Kawahara I. Anat Rec; 1997 Apr 01; 247(4):528-41. PubMed ID: 9096793 [Abstract] [Full Text] [Related]
3. Spacing patterns on tongue surface-gustatory papilla. Jung HS, Akita K, Kim JY. Int J Dev Biol; 2004 Apr 01; 48(2-3):157-61. PubMed ID: 15272380 [Abstract] [Full Text] [Related]
4. Distinctive spatiotemporal expression patterns for neurotrophins develop in gustatory papillae and lingual tissues in embryonic tongue organ cultures. Nosrat CA, MacCallum DK, Mistretta CM. Cell Tissue Res; 2001 Jan 01; 303(1):35-45. PubMed ID: 11236003 [Abstract] [Full Text] [Related]
5. Immunohistochemical detection of the expression of keratin 14 in the lingual epithelium of rats during the morphogenesis of filiform papillae. Iwasaki S, Aoyagi H, Yoshizawa H. Arch Oral Biol; 2003 Aug 01; 48(8):605-13. PubMed ID: 12828990 [Abstract] [Full Text] [Related]
6. Pax9 is required for filiform papilla development and suppresses skin-specific differentiation of the mammalian tongue epithelium. Jonker L, Kist R, Aw A, Wappler I, Peters H. Mech Dev; 2004 Nov 01; 121(11):1313-22. PubMed ID: 15454262 [Abstract] [Full Text] [Related]
7. Cyclopamine and jervine in embryonic rat tongue cultures demonstrate a role for Shh signaling in taste papilla development and patterning: fungiform papillae double in number and form in novel locations in dorsal lingual epithelium. Mistretta CM, Liu HX, Gaffield W, MacCallum DK. Dev Biol; 2003 Feb 01; 254(1):1-18. PubMed ID: 12606278 [Abstract] [Full Text] [Related]
8. Organ cultures of embryonic rat tongue support tongue and gustatory papilla morphogenesis in vitro without intact sensory ganglia. Mbiene JP, Maccallum DK, Mistretta CM. J Comp Neurol; 1997 Jan 20; 377(3):324-40. PubMed ID: 8989649 [Abstract] [Full Text] [Related]
9. Morphogenesis of lingual papillae of one-humped camel (Camelus dromedarius) during prenatal life: A light and scanning electron microscopic study. Abou-Elhamd AS, Abd-Elkareem M, El-Zuhry Zayed A. Anat Histol Embryol; 2018 Feb 20; 47(1):38-45. PubMed ID: 29152779 [Abstract] [Full Text] [Related]
10. Temporal and spatial patterns of tenascin and laminin immunoreactivity suggest roles for extracellular matrix in development of gustatory papillae and taste buds. Mistretta CM, Haus LF. J Comp Neurol; 1996 Jan 15; 364(3):535-555. PubMed ID: 8820882 [Abstract] [Full Text] [Related]
11. Regulatory role of Six1 in the development of taste papillae. Suzuki Y, Ikeda K, Kawakami K. Cell Tissue Res; 2010 Mar 15; 339(3):513-25. PubMed ID: 20143239 [Abstract] [Full Text] [Related]
12. Epithelial overexpression of BDNF or NT4 disrupts targeting of taste neurons that innervate the anterior tongue. Krimm RF, Miller KK, Kitzman PH, Davis BM, Albers KM. Dev Biol; 2001 Apr 15; 232(2):508-21. PubMed ID: 11401409 [Abstract] [Full Text] [Related]
13. Development of gustatory papillae in the absence of Six1 and Six4. Suzuki Y, Ikeda K, Kawakami K. J Anat; 2011 Dec 15; 219(6):710-21. PubMed ID: 21978088 [Abstract] [Full Text] [Related]
14. Role of IGFBPs in the morphogenesis of lingual papillae. Suzuki Y. Anat Rec A Discov Mol Cell Evol Biol; 2005 Sep 15; 286(1):841-7. PubMed ID: 16047381 [Abstract] [Full Text] [Related]
15. Distribution of keratin 8-containing cell clusters in mouse embryonic tongue: evidence for a prepattern for taste bud development. Mbiene JP, Roberts JD. J Comp Neurol; 2003 Mar 03; 457(2):111-22. PubMed ID: 12541313 [Abstract] [Full Text] [Related]
16. Lingual papillary system of the Egyptian mouse-tailed bat (Rhinopoma hardwickii): New insights to its feeding strategies using scanning electron microscope, and immunohistochemical analysis of keratin. Abumandour MMA, Madkour N, Morsy K, Haddad S, Abourashed NM, El Basyouny HA, Kandyel RM. Microsc Res Tech; 2022 Jun 03; 85(6):2192-2205. PubMed ID: 35141973 [Abstract] [Full Text] [Related]
17. Study by scanning electron microscopy of the morphogenesis of three types of lingual papilla in the mouse. Iwasaki S, Yoshizawa H, Kawahara I. Acta Anat (Basel); 1996 Jun 03; 157(1):41-52. PubMed ID: 9096741 [Abstract] [Full Text] [Related]
18. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells. Kist R, Watson M, Crosier M, Robinson M, Fuchs J, Reichelt J, Peters H. PLoS Genet; 2014 Oct 03; 10(10):e1004709. PubMed ID: 25299669 [Abstract] [Full Text] [Related]
19. Morphology of the Lingual and Buccal Papillae in Alpaca (Vicugna pacos) - Light and Scanning Electron Microscopy. Goździewska-Harłajczuk K, Klećkowska-Nawrot J, Janeczek M, Zawadzki M. Anat Histol Embryol; 2015 Oct 03; 44(5):345-60. PubMed ID: 25223623 [Abstract] [Full Text] [Related]
20. Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs. Mistretta CM, Goosens KA, Farinas I, Reichardt LF. J Comp Neurol; 1999 Jun 21; 409(1):13-24. PubMed ID: 10363708 [Abstract] [Full Text] [Related] Page: [Next] [New Search]