These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


100 related items for PubMed ID: 27292

  • 1. Guanosine triphosphate catabolism in human and rabbit erythrocytes: role of reductive deamination of guanylate to inosinate.
    Henderson JF, Zombor G, Burridge PW.
    Can J Biochem; 1978 Jun; 56(6):474-9. PubMed ID: 27292
    [Abstract] [Full Text] [Related]

  • 2. Accumulation of inosine 5'-monophosphate in human erythrocytes incubated with inosine.
    Tomoda A, Yagawa K, Yoneyama Y.
    Biomed Biochim Acta; 1987 Jun; 46(2-3):S280-4. PubMed ID: 2439075
    [Abstract] [Full Text] [Related]

  • 3. Enzymatic formation of inosine 3',5'-monophosphate and of 2'-deoxyguanosine 3',5'-monophosphate. Inosinate and deoxyguanylate cyclase activity.
    Garbers DL, Suddath JL, Hardman JG.
    Biochim Biophys Acta; 1975 Jan 23; 377(1):174-85. PubMed ID: 235291
    [Abstract] [Full Text] [Related]

  • 4. Guanosine triphosphate catabolism in purine nucleoside phosphorylase deficient human B lymphoblastoid cells.
    Barankiewicz J, Stein LD, Cohen A.
    FEBS Lett; 1984 Jan 09; 165(2):207-10. PubMed ID: 6420188
    [Abstract] [Full Text] [Related]

  • 5. Studies of the regulation of purine nucleotide catabolism.
    Lomax CA, Bagnara AS, Henderson JF.
    Can J Biochem; 1975 Feb 09; 53(2):231-41. PubMed ID: 164983
    [Abstract] [Full Text] [Related]

  • 6. Factors affecting the rate of purine ribonucleotide dephosphorylation in human erythrocytes.
    Whelan JM, Bagnara AS.
    Biochim Biophys Acta; 1979 Jul 26; 563(2):466-78. PubMed ID: 465500
    [Abstract] [Full Text] [Related]

  • 7. Nucleotide catabolism and nucleoside cycles in human thymocytes. Role of orthophosphate.
    Barankiewicz J, Cohen A.
    Biochem J; 1984 Apr 01; 219(1):197-203. PubMed ID: 6609703
    [Abstract] [Full Text] [Related]

  • 8. Factors affecting inosinate synthesis and inosine triphosphate accumulation in human erythrocytes.
    Henderson JF, Zombor G, Fraser JH, McCoy EE, Verhoef V, Morris AJ.
    Can J Biochem; 1977 Apr 01; 55(4):359-64. PubMed ID: 15708
    [Abstract] [Full Text] [Related]

  • 9. Relationships among purine nucleoside metabolism, adenosine triphosphate catabolism, and glycolysis in human erythrocytes.
    Henderson JF, Zombor G, Burridge PW, Barankiewicz G, Smith CM.
    Can J Biochem; 1979 Jun 01; 57(6):873-8. PubMed ID: 476524
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Effect of muscular exercise by bicycle ergometer on erythrocyte purine nucleotides.
    Yamamoto T, Moriwaki Y, Takahashi S, Ishizashi H, Higashino K.
    Horm Metab Res; 1994 Nov 01; 26(11):504-8. PubMed ID: 7875643
    [Abstract] [Full Text] [Related]

  • 13. Inosine di- and triphosphate synthesis in erythrocytes and cell extracts.
    Vanderheiden BS.
    J Cell Physiol; 1979 Jun 01; 99(3):287-301. PubMed ID: 457791
    [Abstract] [Full Text] [Related]

  • 14. 2-Deoxyglucose as a substrate for glutathione regeneration in human and ruminant red blood cells.
    Suzuki M, O'Dea JD, Suzuki T, Agar NS.
    Comp Biochem Physiol B; 1983 Jun 01; 75(2):195-7. PubMed ID: 6872511
    [Abstract] [Full Text] [Related]

  • 15. Effect of phenylhydrazine on red blood cell metabolism.
    Magnani M, Rossi L, Cucchiarini L, Stocchi V, Fornaini G.
    Cell Biochem Funct; 1988 Jul 01; 6(3):175-82. PubMed ID: 3409478
    [Abstract] [Full Text] [Related]

  • 16. Energy metabolism and lipid peroxidation of human erythrocytes as a function of increased oxidative stress.
    Tavazzi B, Di Pierro D, Amorini AM, Fazzina G, Tuttobene M, Giardina B, Lazzarino G.
    Eur J Biochem; 2000 Feb 01; 267(3):684-9. PubMed ID: 10651804
    [Abstract] [Full Text] [Related]

  • 17. Studies on the energy metabolism of opossum Didelphis virginiana erythrocytes--III. Metabolic depletion with 2-deoxyglucose markedly accelerates methemoglobin reduction in opossum but not in human erythrocytes.
    Bethlenfalvay NC, Lima JE, Chadwick E, Stewart I.
    Comp Biochem Physiol A Comp Physiol; 1988 Feb 01; 89(2):119-24. PubMed ID: 2896090
    [Abstract] [Full Text] [Related]

  • 18. Pathways of adenine nucleotide catabolism in erythrocytes.
    Bontemps F, Van den Berghe G, Hers HG.
    J Clin Invest; 1986 Mar 01; 77(3):824-30. PubMed ID: 3949980
    [Abstract] [Full Text] [Related]

  • 19. Efficiency of the glycolytic pathway in erythrocytes of children with Down's syndrome.
    Kedziora J, Hübner H, Kański M, Jeske J, Leyko W.
    Pediatr Res; 1972 Jan 01; 6(1):10-7. PubMed ID: 4403044
    [No Abstract] [Full Text] [Related]

  • 20. Metabolism of guanosine in human erythrocytes.
    Ericson A, Niklasson F, de Verdier CH.
    Vox Sang; 1985 Jan 01; 48(2):72-83. PubMed ID: 4072092
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.