These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 27296958
1. Biochemical properties and crystal structure of the flavin reductase FerA from Paracoccus denitrificans. Sedláček V, Klumpler T, Marek J, Kučera I. Microbiol Res; 2016; 188-189():9-22. PubMed ID: 27296958 [Abstract] [Full Text] [Related]
2. The structural and functional basis of catalysis mediated by NAD(P)H:acceptor Oxidoreductase (FerB) of Paracoccus denitrificans. Sedláček V, Klumpler T, Marek J, Kučera I. PLoS One; 2014; 9(5):e96262. PubMed ID: 24817153 [Abstract] [Full Text] [Related]
3. Ferric reductase A is essential for effective iron acquisition in Paracoccus denitrificans. Sedláček V, van Spanning RJM, Kučera I. Microbiology (Reading); 2009 Apr; 155(Pt 4):1294-1301. PubMed ID: 19332830 [Abstract] [Full Text] [Related]
4. Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Mazoch J, Tesarík R, Sedlácek V, Kucera I, Turánek J. Eur J Biochem; 2004 Feb; 271(3):553-62. PubMed ID: 14728682 [Abstract] [Full Text] [Related]
5. Functional and mechanistic characterization of an atypical flavin reductase encoded by the pden_5119 gene in Paracoccus denitrificans. Sedláček V, Kučera I. Mol Microbiol; 2019 Jul; 112(1):166-183. PubMed ID: 30977245 [Abstract] [Full Text] [Related]
6. Arginine-95 is important for recruiting superoxide to the active site of the FerB flavoenzyme of Paracoccus denitrificans. Sedláček V, Kučera I. FEBS Lett; 2019 Apr; 593(7):697-702. PubMed ID: 30883730 [Abstract] [Full Text] [Related]
7. Structural Insight into Catalysis by the Flavin-Dependent NADH Oxidase (Pden_5119) of Paracoccus denitrificans. Kryl M, Sedláček V, Kučera I. Int J Mol Sci; 2023 Feb 13; 24(4):. PubMed ID: 36835143 [Abstract] [Full Text] [Related]
8. Characterization of the quinone reductase activity of the ferric reductase B protein from Paracoccus denitrificans. Sedlácek V, van Spanning RJ, Kucera I. Arch Biochem Biophys; 2009 Mar 01; 483(1):29-36. PubMed ID: 19138657 [Abstract] [Full Text] [Related]
9. Chromate reductase activity of the Paracoccus denitrificans ferric reductase B (FerB) protein and its physiological relevance. Sedláček V, Kučera I. Arch Microbiol; 2010 Nov 01; 192(11):919-26. PubMed ID: 20821194 [Abstract] [Full Text] [Related]
10. Mechanism of coenzyme binding to human methionine synthase reductase revealed through the crystal structure of the FNR-like module and isothermal titration calorimetry. Wolthers KR, Lou X, Toogood HS, Leys D, Scrutton NS. Biochemistry; 2007 Oct 23; 46(42):11833-44. PubMed ID: 17892308 [Abstract] [Full Text] [Related]
11. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity. Kim SH, Hisano T, Iwasaki W, Ebihara A, Miki K. Proteins; 2008 Feb 15; 70(3):718-30. PubMed ID: 17729270 [Abstract] [Full Text] [Related]
12. Structure, biochemical and kinetic properties of recombinant Pst2p from Saccharomyces cerevisiae, a FMN-dependent NAD(P)H:quinone oxidoreductase. Koch K, Hromic A, Sorokina M, Strandback E, Reisinger M, Gruber K, Macheroux P. Biochim Biophys Acta Proteins Proteom; 2017 Aug 15; 1865(8):1046-1056. PubMed ID: 28499769 [Abstract] [Full Text] [Related]
13. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:FAD oxidoreductase (TftC) of Burkholderia cepacia AC1100. Webb BN, Ballinger JW, Kim E, Belchik SM, Lam KS, Youn B, Nissen MS, Xun L, Kang C. J Biol Chem; 2010 Jan 15; 285(3):2014-27. PubMed ID: 19915006 [Abstract] [Full Text] [Related]
14. Expression and characterization of the flavoprotein subcomplex composed of 50-kDa (NQO1) and 25-kDa (NQO2) subunits of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans. Yano T, Sled' VD, Ohnishi T, Yagi T. J Biol Chem; 1996 Mar 08; 271(10):5907-13. PubMed ID: 8621464 [Abstract] [Full Text] [Related]
15. Determination of the redox potentials and electron transfer properties of the FAD- and FMN-binding domains of the human oxidoreductase NR1. Finn RD, Basran J, Roitel O, Wolf CR, Munro AW, Paine MJ, Scrutton NS. Eur J Biochem; 2003 Mar 08; 270(6):1164-75. PubMed ID: 12631275 [Abstract] [Full Text] [Related]
16. Flavin reductase P: structure of a dimeric enzyme that reduces flavin. Tanner JJ, Lei B, Tu SC, Krause KL. Biochemistry; 1996 Oct 22; 35(42):13531-9. PubMed ID: 8885832 [Abstract] [Full Text] [Related]
17. Structural studies on flavin reductase PheA2 reveal binding of NAD in an unusual folded conformation and support novel mechanism of action. van den Heuvel RH, Westphal AH, Heck AJ, Walsh MA, Rovida S, van Berkel WJ, Mattevi A. J Biol Chem; 2004 Mar 26; 279(13):12860-7. PubMed ID: 14703520 [Abstract] [Full Text] [Related]
18. A Novel, NADH-Dependent Acrylate Reductase in Vibrio harveyi. Bertsova YV, Serebryakova MV, Baykov AA, Bogachev AV. Appl Environ Microbiol; 2022 Jun 14; 88(11):e0051922. PubMed ID: 35612301 [Abstract] [Full Text] [Related]
19. FAD is a preferred substrate and an inhibitor of Escherichia coli general NAD(P)H:flavin oxidoreductase. Louie TM, Yang H, Karnchanaphanurach P, Xie XS, Xun L. J Biol Chem; 2002 Oct 18; 277(42):39450-5. PubMed ID: 12177066 [Abstract] [Full Text] [Related]
20. Crystal structures of the short-chain flavin reductase HpaC from Sulfolobus tokodaii strain 7 in its three states: NAD(P)(+)(-)free, NAD(+)(-)bound, and NADP(+)(-)bound. Okai M, Kudo N, Lee WC, Kamo M, Nagata K, Tanokura M. Biochemistry; 2006 Apr 25; 45(16):5103-10. PubMed ID: 16618099 [Abstract] [Full Text] [Related] Page: [Next] [New Search]