These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. Marshall A, Altman DG, Royston P, Holder RL. BMC Med Res Methodol; 2010 Jan 19; 10():7. PubMed ID: 20085642 [Abstract] [Full Text] [Related]
6. The use of complete-case and multiple imputation-based analyses in molecular epidemiology studies that assess interaction effects. Desai M, Esserman DA, Gammon MD, Terry MB. Epidemiol Perspect Innov; 2011 Oct 06; 8(1):5. PubMed ID: 21978450 [Abstract] [Full Text] [Related]
9. Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values. White IR, Carlin JB. Stat Med; 2010 Dec 10; 29(28):2920-31. PubMed ID: 20842622 [Abstract] [Full Text] [Related]
11. Multiple imputation using auxiliary imputation variables that only predict missingness can increase bias due to data missing not at random. Curnow E, Cornish RP, Heron JE, Carpenter JR, Tilling K. BMC Med Res Methodol; 2024 Oct 07; 24(1):231. PubMed ID: 39375597 [Abstract] [Full Text] [Related]
12. How to deal with missing longitudinal data in cost of illness analysis in Alzheimer's disease-suggestions from the GERAS observational study. Belger M, Haro JM, Reed C, Happich M, Kahle-Wrobleski K, Argimon JM, Bruno G, Dodel R, Jones RW, Vellas B, Wimo A. BMC Med Res Methodol; 2016 Jul 18; 16():83. PubMed ID: 27430559 [Abstract] [Full Text] [Related]
14. Missing data and imputation: a practical illustration in a prognostic study on low back pain. Vergouw D, Heymans MW, van der Windt DA, Foster NE, Dunn KM, van der Horst HE, de Vet HC. J Manipulative Physiol Ther; 2012 Jul 18; 35(6):464-71. PubMed ID: 22964020 [Abstract] [Full Text] [Related]
16. [Multiple imputation of missing at random data: General points and presentation of a Monte-Carlo method]. Cottrell G, Cot M, Mary JY. Rev Epidemiol Sante Publique; 2009 Oct 18; 57(5):361-72. PubMed ID: 19674855 [Abstract] [Full Text] [Related]
19. Maximum likelihood versus multiple imputation for missing data in small longitudinal samples with nonnormality. Shin T, Davison ML, Long JD. Psychol Methods; 2017 Sep 18; 22(3):426-449. PubMed ID: 27709974 [Abstract] [Full Text] [Related]
20. Multiple imputation methods for handling missing data in cost-effectiveness analyses that use data from hierarchical studies: an application to cluster randomized trials. Gomes M, Díaz-Ordaz K, Grieve R, Kenward MG. Med Decis Making; 2013 Nov 18; 33(8):1051-63. PubMed ID: 23913915 [Abstract] [Full Text] [Related] Page: [Next] [New Search]