These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


194 related items for PubMed ID: 27322068

  • 1. A family of metal-dependent phosphatases implicated in metabolite damage-control.
    Huang L, Khusnutdinova A, Nocek B, Brown G, Xu X, Cui H, Petit P, Flick R, Zallot R, Balmant K, Ziemak MJ, Shanklin J, de Crécy-Lagard V, Fiehn O, Gregory JF, Joachimiak A, Savchenko A, Yakunin AF, Hanson AD.
    Nat Chem Biol; 2016 Aug; 12(8):621-7. PubMed ID: 27322068
    [Abstract] [Full Text] [Related]

  • 2. Human ARMT1 structure and substrate specificity indicates that it is a DUF89 family damage-control phosphatase.
    Dennis TN, Kenjić N, Kang AS, Lowenson JD, Kirkwood JS, Clarke SG, Perry JJP.
    J Struct Biol; 2020 Oct 01; 212(1):107576. PubMed ID: 32682077
    [Abstract] [Full Text] [Related]

  • 3. The Saccharomyces cerevisiae PHM8 gene encodes a soluble magnesium-dependent lysophosphatidic acid phosphatase.
    Reddy VS, Singh AK, Rajasekharan R.
    J Biol Chem; 2008 Apr 04; 283(14):8846-54. PubMed ID: 18234677
    [Abstract] [Full Text] [Related]

  • 4. Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function.
    Manford A, Xia T, Saxena AK, Stefan C, Hu F, Emr SD, Mao Y.
    EMBO J; 2010 May 05; 29(9):1489-98. PubMed ID: 20389282
    [Abstract] [Full Text] [Related]

  • 5. Structural and functional characterization of a phosphatase domain within yeast general transcription factor IIIC.
    Taylor NM, Glatt S, Hennrich ML, von Scheven G, Grötsch H, Fernández-Tornero C, Rybin V, Gavin AC, Kolb P, Müller CW.
    J Biol Chem; 2013 May 24; 288(21):15110-20. PubMed ID: 23569204
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. The Dcr2p phosphatase destabilizes Sic1p in Saccharomyces cerevisiae.
    Pathak R, Blank HM, Guo J, Ellis S, Polymenis M.
    Biochem Biophys Res Commun; 2007 Sep 28; 361(3):700-4. PubMed ID: 17673172
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Allosteric activation of the phosphoinositide phosphatase Sac1 by anionic phospholipids.
    Zhong S, Hsu F, Stefan CJ, Wu X, Patel A, Cosgrove MS, Mao Y.
    Biochemistry; 2012 Apr 17; 51(15):3170-7. PubMed ID: 22452743
    [Abstract] [Full Text] [Related]

  • 11. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae.
    Kim SR, Xu H, Lesmana A, Kuzmanovic U, Au M, Florencia C, Oh EJ, Zhang G, Kim KH, Jin YS.
    Appl Environ Microbiol; 2015 Mar 17; 81(5):1601-9. PubMed ID: 25527558
    [Abstract] [Full Text] [Related]

  • 12. A Guardian Angel Phosphatase for Mainline Carbon Metabolism.
    Beaudoin GA, Hanson AD.
    Trends Biochem Sci; 2016 Nov 17; 41(11):893-894. PubMed ID: 27544441
    [Abstract] [Full Text] [Related]

  • 13. Transmembrane topology of sphingoid long-chain base-1-phosphate phosphatase, Lcb3p.
    Kihara A, Sano T, Iwaki S, Igarashi Y.
    Genes Cells; 2003 Jun 17; 8(6):525-35. PubMed ID: 12786943
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The phosphatase system in Saccharomyces cerevisiae.
    Oshima Y.
    Genes Genet Syst; 1997 Dec 17; 72(6):323-34. PubMed ID: 9544531
    [Abstract] [Full Text] [Related]

  • 16. A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity.
    Tuleva B, Vasileva-Tonkova E, Galabova D.
    FEMS Microbiol Lett; 1998 Apr 01; 161(1):139-44. PubMed ID: 9561742
    [Abstract] [Full Text] [Related]

  • 17. A highly specific phosphatase that acts on ADP-ribose 1''-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae.
    Shull NP, Spinelli SL, Phizicky EM.
    Nucleic Acids Res; 2005 Apr 01; 33(2):650-60. PubMed ID: 15684411
    [Abstract] [Full Text] [Related]

  • 18. Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis.
    Srinivasan S, Seaman M, Nemoto Y, Daniell L, Suchy SF, Emr S, De Camilli P, Nussbaum R.
    Eur J Cell Biol; 1997 Dec 01; 74(4):350-60. PubMed ID: 9438131
    [Abstract] [Full Text] [Related]

  • 19. Mammalian inositol polyphosphate 5-phosphatase II can compensate for the absence of all three yeast Sac1-like-domain-containing 5-phosphatases.
    O'Malley CJ, McColl BK, Kong AM, Ellis SL, Wijayaratnam AP, Sambrook J, Mitchell CA.
    Biochem J; 2001 May 01; 355(Pt 3):805-17. PubMed ID: 11311145
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.