These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
273 related items for PubMed ID: 27323648
1. Influencing Mechanism of the Selenization Temperature and Time on the Power Conversion Efficiency of Cu2ZnSn(S,Se)4-Based Solar Cells. Xiao ZY, Yao B, Li YF, Ding ZH, Gao ZM, Zhao HF, Zhang LG, Zhang ZZ, Sui YR, Wang G. ACS Appl Mater Interfaces; 2016 Jul 13; 8(27):17334-42. PubMed ID: 27323648 [Abstract] [Full Text] [Related]
2. A Study on the Effects of Selenization Temperature on the Properties of Na-Doped Cu2ZnSn(S,Se)4 Thin Film and Its Correlation with the Performance of Solar Cells. Wang Z, Jiang D, Zeng F, Sui Y. Nanomaterials (Basel); 2021 Sep 18; 11(9):. PubMed ID: 34578751 [Abstract] [Full Text] [Related]
3. Kesterite Cu2ZnSn(S,Se)4 Solar Cells with beyond 8% Efficiency by a Sol-Gel and Selenization Process. Liu F, Zeng F, Song N, Jiang L, Han Z, Su Z, Yan C, Wen X, Hao X, Liu Y. ACS Appl Mater Interfaces; 2015 Jul 08; 7(26):14376-83. PubMed ID: 26080031 [Abstract] [Full Text] [Related]
4. Improvement of Efficiency in Kesterite Solar Cells by Intentionally Inserting a Thin MoS2 Layer into the Back Interface. Xu SZ, Song YP, Yao B, Li MG, Ding ZH, Deng R, Liang HN, Du XB, Li YF. ACS Appl Mater Interfaces; 2024 Feb 28; 16(8):11026-11034. PubMed ID: 38361494 [Abstract] [Full Text] [Related]
5. 2D Ti3C2-MXene Serving as Intermediate Layer between Absorber and Back Contact for Efficient CZTSSe Solar Cells. Ma Q, Cui XP, Zhou WH, Kou DX, Zhou ZJ, Meng YN, Qi YF, Yuan SJ, Han LT, Wu SX. ACS Appl Mater Interfaces; 2023 Dec 06; 15(48):55652-55658. PubMed ID: 37991928 [Abstract] [Full Text] [Related]
6. Improving the Device Performance of CZTSSe Thin-Film Solar Cells via Indium Doping. Korade SD, Gour KS, Karade VC, Jang JS, Rehan M, Patil SS, Bhat TS, Patil AP, Yun JH, Park J, Kim JH, Patil PS. ACS Appl Mater Interfaces; 2023 Dec 04. PubMed ID: 38047907 [Abstract] [Full Text] [Related]
7. 10.24% Efficiency of Flexible Cu2 ZnSn(S,Se)4 Solar Cells by Pre-Evaporation Selenization Technique. Xie W, Sun Q, Yan Q, Wu J, Zhang C, Zheng Q, Lai Y, Deng H, Cheng S. Small; 2022 Jun 04; 18(22):e2201347. PubMed ID: 35510960 [Abstract] [Full Text] [Related]
8. Enhanced Carrier Collection in Cd/In-Based Dual Buffers in Kesterite Thin-Film Solar Cells from Nanoparticle Inks. Campbell S, Zoppi G, Bowen L, Maiello P, Barrioz V, Beattie NS, Qu Y. ACS Appl Energy Mater; 2023 Nov 13; 6(21):10883-10896. PubMed ID: 38020741 [Abstract] [Full Text] [Related]
10. Doping of Sb into Cu2ZnSn(S,Se)4 absorber layer via Se&Sb2Se3 co-selenization strategy for enhancing open-circuit voltage of kesterite solar cells. Zhao B, Deng Y, Cao L, Zhu J, Zhou Z. Front Chem; 2022 Nov 13; 10():974761. PubMed ID: 36017168 [Abstract] [Full Text] [Related]
12. Segmented Control of Selenization Environment for High-Quality Cu2ZnSn(S,Se)4 Films Toward Efficient Kesterite Solar Cells. Jian Y, Han L, Kong X, Xie T, Kou D, Zhou W, Zhou Z, Yuan S, Meng Y, Qi Y, Liang G, Zhang X, Zheng Z, Wu S. Small Methods; 2024 Dec 13; 8(12):e2400041. PubMed ID: 38766987 [Abstract] [Full Text] [Related]
13. Phase-Separation-Induced Crystal Growth for Large-Grained Cu2ZnSn(S,Se)4 Thin Film. Huang L, Wei S, Pan D. ACS Appl Mater Interfaces; 2018 Oct 17; 10(41):35069-35078. PubMed ID: 30247020 [Abstract] [Full Text] [Related]
14. Microenvironment Created by SnSe2 Vapor and Pre-Selenization to Stabilize the Surface and Back Contact in Kesterite Solar Cells. Guo J, Mao Y, Ao J, Han Y, Cao C, Liu F, Bi J, Wang S, Zhang Y. Small; 2022 Nov 17; 18(47):e2203354. PubMed ID: 36180408 [Abstract] [Full Text] [Related]
15. Fabrication of a High-Quality Cu2ZnSn(S,Se)4 Absorber Layer via an Aqueous Solution Process and Application in Solar Cells. Zhao W, Yu F, Liu SF. ACS Appl Mater Interfaces; 2019 Jan 09; 11(1):634-639. PubMed ID: 30560655 [Abstract] [Full Text] [Related]
16. Substitution of Ag for Cu in Cu2ZnSn(S,Se)4: Toward Wide Band Gap Absorbers with Low Antisite Defects for Thin Film Solar Cells. Wu Y, Sui Y, He W, Zeng F, Wang Z, Wang F, Yao B, Yang L. Nanomaterials (Basel); 2020 Jan 03; 10(1):. PubMed ID: 31947756 [Abstract] [Full Text] [Related]
17. Insight into the Effect of Selenization Temperature for Highly Efficient Ni-Doped Cu2ZnSn(S,Se)4 Solar Cells. Zeng F, Sui Y, Ma M, Zhao N, Wang T, Wang Z, Yang L, Wang F, Li H, Yao B. Nanomaterials (Basel); 2022 Aug 26; 12(17):. PubMed ID: 36079979 [Abstract] [Full Text] [Related]
18. Enhanced efficiency of Cu2ZnSn(S,Se)4 solar cells via anti-reflectance properties and surface passivation by atomic layer deposited aluminum oxide. Zhang B, Han L, Ying S, Li Y, Yao B. RSC Adv; 2018 May 22; 8(34):19213-19219. PubMed ID: 35539659 [Abstract] [Full Text] [Related]
19. Two-Step Annealing CZTSSe/CdS Heterojunction to Improve Interface Properties of Kesterite Solar Cells. Duan B, Lou L, Meng F, Zhou J, Wang J, Shi J, Wu H, Luo Y, Li D, Meng Q. ACS Appl Mater Interfaces; 2021 Nov 24; 13(46):55243-55253. PubMed ID: 34751555 [Abstract] [Full Text] [Related]
20. Regulating Hetero-Nucleation Enabling Over 14% Efficient Kesterite Solar Cells. Wei H, Cui C, Li Y, Wu Z, Wei Y, Han Y, Han L, Lu B, Wang X, Pang S, Shao Z, Cui G. Small; 2024 May 24; 20(19):e2308266. PubMed ID: 38100155 [Abstract] [Full Text] [Related] Page: [Next] [New Search]