These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
324 related items for PubMed ID: 27340221
21. Near-infrared analysis of ground barley for use as a feedstock for fuel ethanol production. Sohn M, Himmelsbach DS, Barton FE, Griffey CA, Brooks W, Hicks KB. Appl Spectrosc; 2007 Nov; 61(11):1178-83. PubMed ID: 18028696 [Abstract] [Full Text] [Related]
22. Analysis of oligomer proanthocyanidins in different barley genotypes using high-performance liquid chromatography-fluorescence detection-mass spectrometry and near-infrared methodologies. Verardo V, Cevoli C, Pasini F, Gómez-Caravaca AM, Marconi E, Fabbri A, Caboni MF. J Agric Food Chem; 2015 Apr 29; 63(16):4130-7. PubMed ID: 25803838 [Abstract] [Full Text] [Related]
23. Near-infrared Spectroscopy in the Brewing Industry. Sileoni V, Marconi O, Perretti G. Crit Rev Food Sci Nutr; 2015 Apr 29; 55(12):1771-91. PubMed ID: 24915307 [Abstract] [Full Text] [Related]
24. Dry fractionation methods to produce barley meals varying in protein, beta-glucan, and starch contents. Liu K, Barrows FT, Obert D. J Food Sci; 2009 Aug 29; 74(6):C487-99. PubMed ID: 19723187 [Abstract] [Full Text] [Related]
25. Applications of single kernel conventional and hyperspectral imaging near infrared spectroscopy in cereals. Fox G, Manley M. J Sci Food Agric; 2014 Jan 30; 94(2):174-9. PubMed ID: 24038031 [Abstract] [Full Text] [Related]
26. A double-blind randomised controlled trial testing the effect of a barley product containing varying amounts and types of fibre on the postprandial glucose response of healthy volunteers. Ames N, Blewett H, Storsley J, Thandapilly SJ, Zahradka P, Taylor C. Br J Nutr; 2015 May 14; 113(9):1373-83. PubMed ID: 25850814 [Abstract] [Full Text] [Related]
27. Environment found to explain the largest variance in physical and compositional traits in malting barley grain. Ramanan M, Gielens DRS, de Schepper CF, Courtin CM, Diepenbrock C, Fox GP. J Sci Food Agric; 2024 Nov 14; 104(14):8780-8790. PubMed ID: 38963165 [Abstract] [Full Text] [Related]
28. NIR-FT-Raman spectroscopic analytical characterization of the fruits, seeds, and phytotherapeutic oils from rosehips. da Silva CE, Vandenabeele P, Edwards HG, de Oliveira LF. Anal Bioanal Chem; 2008 Dec 14; 392(7-8):1489-96. PubMed ID: 18931992 [Abstract] [Full Text] [Related]
29. [The application of near-infrared reflectance spectroscopy in seeds quality certification]. Ren WB, Han JG, Zhang YW, Guo HQ. Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Mar 14; 28(3):555-8. PubMed ID: 18536411 [Abstract] [Full Text] [Related]
30. [Near-infrared reflectance spectroscopy predicts protein, moisture and ash in beans]. Gao H, Wang G, Men J, Wang Z. Wei Sheng Yan Jiu; 2017 May 14; 46(3):461-471. PubMed ID: 29903260 [Abstract] [Full Text] [Related]
31. Application of Near Infrared Reflectance Spectroscopy for Rapid and Non-Destructive Discrimination of Hulled Barley, Naked Barley, and Wheat Contaminated with Fusarium. Lim J, Kim G, Mo C, Oh K, Kim G, Ham H, Kim S, Kim MS. Sensors (Basel); 2018 Jan 02; 18(1):. PubMed ID: 29301319 [Abstract] [Full Text] [Related]
32. Explore protein molecular structure in endosperm tissues in newly developed black and yellow type canola seeds by using synchrotron-based Fourier transform infrared microspectroscopy. Theodoridou K, Vail S, Yu P. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan 02; 120():421-7. PubMed ID: 24211800 [Abstract] [Full Text] [Related]
33. Authentication of pure camellia oil by using near infrared spectroscopy and pattern recognition techniques. Li S, Zhu X, Zhang J, Li G, Su D, Shan Y. J Food Sci; 2012 Apr 02; 77(4):C374-80. PubMed ID: 22429109 [Abstract] [Full Text] [Related]
34. Starch structure in developing barley endosperm. Källman A, Bertoft E, Koch K, Sun C, Åman P, Andersson R. Int J Biol Macromol; 2015 Nov 02; 81():730-5. PubMed ID: 26361866 [Abstract] [Full Text] [Related]
35. [Predicting the chemical composition of intact kernels in maize hybrids by near infrared reflectance spectroscopy]. Wei LM, Jiang HY, Li JH, Yan YL, Dai JR. Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Sep 02; 25(9):1404-7. PubMed ID: 16379276 [Abstract] [Full Text] [Related]
36. Metabolite fingerprinting of barley whole seeds, endosperms, and embryos during industrial malting. Gorzolka K, Lissel M, Kessler N, Loch-Ahring S, Niehaus K. J Biotechnol; 2012 Jun 15; 159(3):177-87. PubMed ID: 22465293 [Abstract] [Full Text] [Related]
37. Feasibility of FT–Raman spectroscopy for rapid screening for DON toxin in ground wheat and barley. Liu Y, Delwiche SR, Dong Y. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Oct 15; 26(10):1396-401. PubMed ID: 21462584 [Abstract] [Full Text] [Related]
38. [Prediction of protein content of intact wheat seeds with near infrared reflectance spectroscopy (NIRS)]. Wang WD, Gu YH, Qin GY, Huo YP. Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Apr 15; 27(4):697-701. PubMed ID: 17608178 [Abstract] [Full Text] [Related]
39. The embryo and the endosperm contribute equally to argan seed oil yield but confer distinct lipid features to argan oil. Errouane K, Doulbeau S, Vaissayre V, Leblanc O, Collin M, Kaid-Harche M, Dussert S. Food Chem; 2015 Aug 15; 181():270-6. PubMed ID: 25794750 [Abstract] [Full Text] [Related]
40. Mass Spectrometric Imaging of Wheat (Triticum spp.) and Barley (Hordeum vulgare L.) Cultivars: Distribution of Major Cell Wall Polysaccharides According to Their Main Structural Features. Veličković D, Saulnier L, Lhomme M, Damond A, Guillon F, Rogniaux H. J Agric Food Chem; 2016 Aug 17; 64(32):6249-56. PubMed ID: 27463368 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]