These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
499 related items for PubMed ID: 27341613
1. Neuromechanical synergies in single-leg landing reveal changes in movement control. Nordin AD, Dufek JS. Hum Mov Sci; 2016 Oct; 49():66-78. PubMed ID: 27341613 [Abstract] [Full Text] [Related]
2. Load Accommodation Strategies and Movement Variability in Single-Leg Landing. Nordin AD, Dufek JS. J Appl Biomech; 2017 Aug; 33(4):241-247. PubMed ID: 28084863 [Abstract] [Full Text] [Related]
3. Single-leg landing neuromechanical data following load and land height manipulations. Nordin AD, Dufek JS. Data Brief; 2016 Sep; 8():1024-30. PubMed ID: 27508258 [Abstract] [Full Text] [Related]
6. The relationship between leg stiffness, forces and neural control of the leg musculature during the stretch-shortening cycle is dependent on the anticipation of drop height. Helm M, Freyler K, Waldvogel J, Gollhofer A, Ritzmann R. Eur J Appl Physiol; 2019 Sep; 119(9):1981-1999. PubMed ID: 31367910 [Abstract] [Full Text] [Related]
9. Muscle function during single leg landing. Maniar N, Schache AG, Pizzolato C, Opar DA. Sci Rep; 2022 Jul 07; 12(1):11486. PubMed ID: 35798797 [Abstract] [Full Text] [Related]
11. A Biomechanical Comparison of Single-Leg Landing and Unplanned Sidestepping. Chinnasee C, Weir G, Sasimontonkul S, Alderson J, Donnelly C. Int J Sports Med; 2018 Jul 07; 39(8):636-645. PubMed ID: 29902807 [Abstract] [Full Text] [Related]
12. Contributions to the understanding of gait control. Simonsen EB. Dan Med J; 2014 Apr 07; 61(4):B4823. PubMed ID: 24814597 [Abstract] [Full Text] [Related]
13. Anticipatory Effects on Lower Extremity Neuromechanics During a Cutting Task. Meinerz CM, Malloy P, Geiser CF, Kipp K. J Athl Train; 2015 Sep 07; 50(9):905-13. PubMed ID: 26285089 [Abstract] [Full Text] [Related]
14. Effect of fatigue on single-leg hop landing biomechanics. Orishimo KF, Kremenic IJ. J Appl Biomech; 2006 Nov 07; 22(4):245-54. PubMed ID: 17293621 [Abstract] [Full Text] [Related]
16. Comparison the time to stabilization and activity of the lower extremity muscles during jump-landing in subjects with and without Genu Varum. Letafatkar A, Mantashloo Z, Moradi M. Gait Posture; 2018 Sep 07; 65():256-261. PubMed ID: 30558941 [Abstract] [Full Text] [Related]
17. Effects of foot orthoses on walking and jump landing biomechanics of individuals with chronic ankle instability. Moisan G, Mainville C, Descarreaux M, Cantin V. Phys Ther Sport; 2019 Nov 07; 40():53-58. PubMed ID: 31476698 [Abstract] [Full Text] [Related]
18. Differences of ground reaction forces and kinematics of lower extremity according to landing height between flat and normal feet. Chang JS, Kwon YH, Kim CS, Ahn SH, Park SH. J Back Musculoskelet Rehabil; 2012 Nov 07; 25(1):21-6. PubMed ID: 22398263 [Abstract] [Full Text] [Related]
19. Hip-abductor fatigue and single-leg landing mechanics in women athletes. Patrek MF, Kernozek TW, Willson JD, Wright GA, Doberstein ST. J Athl Train; 2011 Nov 07; 46(1):31-42. PubMed ID: 21214348 [Abstract] [Full Text] [Related]
20. Effect of Dropping Height on the Forces of Lower Extremity Joints and Muscles during Landing: A Musculoskeletal Modeling. Niu W, Wang L, Jiang C, Zhang M. J Healthc Eng; 2018 Nov 07; 2018():2632603. PubMed ID: 30079173 [Abstract] [Full Text] [Related] Page: [Next] [New Search]