These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
177 related items for PubMed ID: 27346539
1. First description of the neuro-anatomy of a larval coral reef fish Amphiprion ocellaris. Jacob H, Metian M, Brooker RM, Duran E, Nakamura N, Roux N, Masanet P, Soulat O, Lecchini D. J Fish Biol; 2016 Sep; 89(3):1583-91. PubMed ID: 27346539 [Abstract] [Full Text] [Related]
2. Variation in brain organization of coral reef fish larvae according to life history traits. Lecchini D, Lecellier G, Lanyon RG, Holles S, Poucet B, Duran E. Brain Behav Evol; 2014 Sep; 83(1):17-30. PubMed ID: 24401605 [Abstract] [Full Text] [Related]
3. [Metamorphosis of marine fish larvae and thyroid hormones]. Roux N, Salis P, Laudet V. Biol Aujourdhui; 2019 Sep; 213(1-2):27-33. PubMed ID: 31274100 [Abstract] [Full Text] [Related]
4. Suspended sediment prolongs larval development in a coral reef fish. Wenger AS, McCormick MI, Endo GG, McLeod IM, Kroon FJ, Jones GP. J Exp Biol; 2014 Apr 01; 217(Pt 7):1122-8. PubMed ID: 24311818 [Abstract] [Full Text] [Related]
5. Staging and normal table of postembryonic development of the clownfish (Amphiprion ocellaris). Roux N, Salis P, Lambert A, Logeux V, Soulat O, Romans P, Frédérich B, Lecchini D, Laudet V. Dev Dyn; 2019 Jul 01; 248(7):545-568. PubMed ID: 31070818 [Abstract] [Full Text] [Related]
6. Tissue-specific transcriptional response of post-larval clownfish to ocean warming. Moore B, Jolly J, Izumiyama M, Kawai E, Ravasi T, Ryu T. Sci Total Environ; 2024 Jan 15; 908():168221. PubMed ID: 37923256 [Abstract] [Full Text] [Related]
7. An integrative investigation of developmental toxicities induced by triphenyltin in a larval coral reef fish, Amphiprion ocellaris. Hou Y, Cai XW, Liang ZF, Duan DD, Diao XP, Zhang JL. Sci Total Environ; 2023 Apr 01; 867():161487. PubMed ID: 36638977 [Abstract] [Full Text] [Related]
8. Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: an example from damselfishes (Pomacentridae). Frédérich B, Vandewalle P. BMC Evol Biol; 2011 Mar 30; 11():82. PubMed ID: 21450094 [Abstract] [Full Text] [Related]
9. Larval traits carry over to affect post-settlement behaviour in a common coral reef fish. Dingeldein AL, White JW. J Anim Ecol; 2016 Jul 30; 85(4):903-14. PubMed ID: 26913461 [Abstract] [Full Text] [Related]
10. Morphological development of larval cobia Rachycentron canadum and the influence of dietary taurine supplementation. Salze G, Craig SR, Smith BH, Smith EP, McLean E. J Fish Biol; 2011 May 30; 78(5):1470-91. PubMed ID: 21539554 [Abstract] [Full Text] [Related]
11. Prey selection and functional morphology through ontogeny of Amphiprion clarkii with a congeneric comparison. Anto J, Majoris J, Turingan RG. J Fish Biol; 2009 Aug 30; 75(3):575-90. PubMed ID: 20738558 [Abstract] [Full Text] [Related]
12. A star is born again: Methods for larval rearing of an emerging model organism, the False clownfish Amphiprion ocellaris. Roux N, Logeux V, Trouillard N, Pillot R, Magré K, Salis P, Lecchini D, Besseau L, Laudet V, Romans P. J Exp Zool B Mol Dev Evol; 2021 Jun 30; 336(4):376-385. PubMed ID: 33539680 [Abstract] [Full Text] [Related]
13. The real Nemo movie: Description of embryonic development in Amphiprion ocellaris from first division to hatching. Salis P, Lee SH, Roux N, Lecchini D, Laudet V. Dev Dyn; 2021 Nov 30; 250(11):1651-1667. PubMed ID: 33899313 [Abstract] [Full Text] [Related]
14. Relating the ontogeny of functional morphology and prey selection with larval mortality in Amphiprion frenatus. Anto J, Turingan RG. J Morphol; 2010 Jun 30; 271(6):682-96. PubMed ID: 20101727 [Abstract] [Full Text] [Related]
15. Oceanographic and behavioural assumptions in models of the fate of coral and coral reef fish larvae. Wolanski E, Kingsford MJ. J R Soc Interface; 2014 Sep 06; 11(98):20140209. PubMed ID: 24966233 [Abstract] [Full Text] [Related]
16. Spatial patterns of self-recruitment of a coral reef fish in relation to island-scale retention mechanisms. Beldade R, Holbrook SJ, Schmitt RJ, Planes S, Bernardi G. Mol Ecol; 2016 Oct 06; 25(20):5203-5211. PubMed ID: 27557731 [Abstract] [Full Text] [Related]
17. Rapid physiological and transcriptomic changes associated with oxygen delivery in larval anemonefish suggest a role in adaptation to life on hypoxic coral reefs. Downie AT, Lefevre S, Illing B, Harris J, Jarrold MD, McCormick MI, Nilsson GE, Rummer JL. PLoS Biol; 2023 May 06; 21(5):e3002102. PubMed ID: 37167194 [Abstract] [Full Text] [Related]
18. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: Impacts on gill structure and microbiome. Hess S, Wenger AS, Ainsworth TD, Rummer JL. Sci Rep; 2015 Jun 22; 5():10561. PubMed ID: 26094624 [Abstract] [Full Text] [Related]
19. Limited Capacity for Faster Digestion in Larval Coral Reef Fish at an Elevated Temperature. McLeod IM, Clark TD. PLoS One; 2016 Jun 22; 11(5):e0155360. PubMed ID: 27191721 [Abstract] [Full Text] [Related]
20. Fish larval recruitment to reefs is a thyroid hormone-mediated metamorphosis sensitive to the pesticide chlorpyrifos. Holzer G, Besson M, Lambert A, François L, Barth P, Gillet B, Hughes S, Piganeau G, Leulier F, Viriot L, Lecchini D, Laudet V. Elife; 2017 Oct 30; 6():. PubMed ID: 29083300 [Abstract] [Full Text] [Related] Page: [Next] [New Search]