These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 27354191

  • 1. EEG-Based Detection of Starting and Stopping During Gait Cycle.
    Hortal E, Úbeda A, Iáñez E, Azorín JM, Fernández E.
    Int J Neural Syst; 2016 Nov; 26(7):1650029. PubMed ID: 27354191
    [Abstract] [Full Text] [Related]

  • 2. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.
    Rajasekaran V, López-Larraz E, Trincado-Alonso F, Aranda J, Montesano L, Del-Ama AJ, Pons JL.
    J Neuroeng Rehabil; 2018 Jan 03; 15(1):4. PubMed ID: 29298691
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Pseudo-Online BMI Based on EEG to Detect the Appearance of Sudden Obstacles during Walking.
    Elvira M, Iáñez E, Quiles V, Ortiz M, Azorín JM.
    Sensors (Basel); 2019 Dec 10; 19(24):. PubMed ID: 31835546
    [Abstract] [Full Text] [Related]

  • 5. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP, He Y, Brown S, Nakagame S, Contreras-Vidal JL.
    J Neural Eng; 2016 Jun 10; 13(3):036006. PubMed ID: 27064824
    [Abstract] [Full Text] [Related]

  • 6. Prediction of gait intention from pre-movement EEG signals: a feasibility study.
    Shafiul Hasan SM, Siddiquee MR, Atri R, Ramon R, Marquez JS, Bai O.
    J Neuroeng Rehabil; 2020 Apr 16; 17(1):50. PubMed ID: 32299460
    [Abstract] [Full Text] [Related]

  • 7. Decoding the Attentional Demands of Gait through EEG Gamma Band Features.
    Costa Á, Iáñez E, Úbeda A, Hortal E, Del-Ama AJ, Gil-Agudo Á, Azorín JM.
    PLoS One; 2016 Apr 16; 11(4):e0154136. PubMed ID: 27115740
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Comparing Recalibration Strategies for Electroencephalography-Based Decoders of Movement Intention in Neurological Patients with Motor Disability.
    López-Larraz E, Ibáñez J, Trincado-Alonso F, Monge-Pereira E, Pons JL, Montesano L.
    Int J Neural Syst; 2018 Sep 16; 28(7):1750060. PubMed ID: 29463157
    [Abstract] [Full Text] [Related]

  • 10. Brain-machine interfaces for controlling lower-limb powered robotic systems.
    He Y, Eguren D, Azorín JM, Grossman RG, Luu TP, Contreras-Vidal JL.
    J Neural Eng; 2018 Apr 16; 15(2):021004. PubMed ID: 29345632
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T, Sakurada T, Koike Y, Kansaku K.
    J Neural Eng; 2017 Feb 16; 14(1):016015. PubMed ID: 28068293
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials.
    Jiang N, Gizzi L, Mrachacz-Kersting N, Dremstrup K, Farina D.
    Clin Neurophysiol; 2015 Jan 16; 126(1):154-9. PubMed ID: 24910150
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.