These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
468 related items for PubMed ID: 27355827
1. A Conserved MicroRNA Regulatory Circuit Is Differentially Controlled during Limb/Appendage Regeneration. King BL, Yin VP. PLoS One; 2016; 11(6):e0157106. PubMed ID: 27355827 [Abstract] [Full Text] [Related]
2. von Willebrand factor D and EGF domains is an evolutionarily conserved and required feature of blastemas capable of multitissue appendage regeneration. Leigh ND, Sessa S, Dragalzew AC, Payzin-Dogru D, Sousa JF, Aggouras AN, Johnson K, Dunlap GS, Haas BJ, Levin M, Schneider I, Whited JL. Evol Dev; 2020 Jul; 22(4):297-311. PubMed ID: 32163674 [Abstract] [Full Text] [Related]
3. De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration. Wu CH, Tsai MH, Ho CC, Chen CY, Lee HS. BMC Genomics; 2013 Jul 01; 14():434. PubMed ID: 23815514 [Abstract] [Full Text] [Related]
5. Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration. Blum N, Begemann G. Development; 2012 Jan 01; 139(1):107-16. PubMed ID: 22096078 [Abstract] [Full Text] [Related]
6. Deep evolutionary origin of limb and fin regeneration. Darnet S, Dragalzew AC, Amaral DB, Sousa JF, Thompson AW, Cass AN, Lorena J, Pires ES, Costa CM, Sousa MP, Fröbisch NB, Oliveira G, Schneider PN, Davis MC, Braasch I, Schneider I. Proc Natl Acad Sci U S A; 2019 Jul 23; 116(30):15106-15115. PubMed ID: 31270239 [Abstract] [Full Text] [Related]
7. Integrated analysis of RNA-seq and microRNA-seq depicts miRNA-mRNA networks involved in stripe patterns of Botia superciliaris skin. Zhou J, Zhao H, Zhang L, Liu C, Feng S, Ma J, Li Q, Ke H, Wang X, Liu L, Liu C, Su X, Liu Y, Yang S. Funct Integr Genomics; 2019 Sep 23; 19(5):827-838. PubMed ID: 31111266 [Abstract] [Full Text] [Related]
8. Blastema induction in aneurogenic state and Prrx-1 regulation by MMPs and FGFs in Ambystoma mexicanum limb regeneration. Satoh A, makanae A, Hirata A, Satou Y. Dev Biol; 2011 Jul 15; 355(2):263-74. PubMed ID: 21539833 [Abstract] [Full Text] [Related]
9. Suppressors of cGAS-STING are downregulated during fin-limb regeneration and aging in aquatic vertebrates. Mathavarajah S, Thompson AW, Stoyek MR, Quinn TA, Roy S, Braasch I, Dellaire G. J Exp Zool B Mol Dev Evol; 2024 May 15; 342(3):241-251. PubMed ID: 37877156 [Abstract] [Full Text] [Related]
10. Transcriptomic landscape of the blastema niche in regenerating adult axolotl limbs at single-cell resolution. Leigh ND, Dunlap GS, Johnson K, Mariano R, Oshiro R, Wong AY, Bryant DM, Miller BM, Ratner A, Chen A, Ye WW, Haas BJ, Whited JL. Nat Commun; 2018 Dec 04; 9(1):5153. PubMed ID: 30514844 [Abstract] [Full Text] [Related]
11. Transcriptional landscapes of Axolotl (Ambystoma mexicanum). Caballero-Pérez J, Espinal-Centeno A, Falcon F, García-Ortega LF, Curiel-Quesada E, Cruz-Hernández A, Bako L, Chen X, Martínez O, Alberto Arteaga-Vázquez M, Herrera-Estrella L, Cruz-Ramírez A. Dev Biol; 2018 Jan 15; 433(2):227-239. PubMed ID: 29291975 [Abstract] [Full Text] [Related]
12. Exploring the role of microRNAs in axolotl regeneration. Abo-Al-Ela HG, Burgos-Aceves MA. J Cell Physiol; 2021 Feb 15; 236(2):839-850. PubMed ID: 32638401 [Abstract] [Full Text] [Related]
13. Expression of fibroblast growth factors 4, 8, and 10 in limbs, flanks, and blastemas of Ambystoma. Christensen RN, Weinstein M, Tassava RA. Dev Dyn; 2002 Mar 15; 223(2):193-203. PubMed ID: 11836784 [Abstract] [Full Text] [Related]
14. Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema. Stewart R, Rascón CA, Tian S, Nie J, Barry C, Chu LF, Ardalani H, Wagner RJ, Probasco MD, Bolin JM, Leng N, Sengupta S, Volkmer M, Habermann B, Tanaka EM, Thomson JA, Dewey CN. PLoS Comput Biol; 2013 Mar 15; 9(3):e1002936. PubMed ID: 23505351 [Abstract] [Full Text] [Related]
15. Bichirs employ similar genetic pathways for limb regeneration as are used in lungfish and salamanders. Lu S, Yang L, Jiang H, Chen J, Yu G, Chen Z, Xia X, He S. Gene; 2019 Mar 30; 690():68-74. PubMed ID: 30583027 [Abstract] [Full Text] [Related]
16. Live Imaging of Axolotl Digit Regeneration Reveals Spatiotemporal Choreography of Diverse Connective Tissue Progenitor Pools. Currie JD, Kawaguchi A, Traspas RM, Schuez M, Chara O, Tanaka EM. Dev Cell; 2016 Nov 21; 39(4):411-423. PubMed ID: 27840105 [Abstract] [Full Text] [Related]
18. Comparative transcriptomics of limb regeneration: Identification of conserved expression changes among three species of Ambystoma. Dwaraka VB, Smith JJ, Woodcock MR, Voss SR. Genomics; 2019 Dec 15; 111(6):1216-1225. PubMed ID: 30092345 [Abstract] [Full Text] [Related]
19. Network based transcription factor analysis of regenerating axolotl limbs. Jhamb D, Rao N, Milner DJ, Song F, Cameron JA, Stocum DL, Palakal MJ. BMC Bioinformatics; 2011 Mar 18; 12():80. PubMed ID: 21418574 [Abstract] [Full Text] [Related]
20. Integrated analyses of zebrafish miRNA and mRNA expression profiles identify miR-29b and miR-223 as potential regulators of optic nerve regeneration. Fuller-Carter PI, Carter KW, Anderson D, Harvey AR, Giles KM, Rodger J. BMC Genomics; 2015 Aug 12; 16(1):591. PubMed ID: 26265132 [Abstract] [Full Text] [Related] Page: [Next] [New Search]