These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 27367467
1. Assessment of Solvated Interaction Energy Function for Ranking Antibody-Antigen Binding Affinities. Sulea T, Vivcharuk V, Corbeil CR, Deprez C, Purisima EO. J Chem Inf Model; 2016 Jul 25; 56(7):1292-303. PubMed ID: 27367467 [Abstract] [Full Text] [Related]
2. Molecular dynamics-solvated interaction energy studies of protein-protein interactions: the MP1-p14 scaffolding complex. Cui Q, Sulea T, Schrag JD, Munger C, Hung MN, Naïm M, Cygler M, Purisima EO. J Mol Biol; 2008 Jun 13; 379(4):787-802. PubMed ID: 18479705 [Abstract] [Full Text] [Related]
3. The solvated interaction energy method for scoring binding affinities. Sulea T, Purisima EO. Methods Mol Biol; 2012 Jun 13; 819():295-303. PubMed ID: 22183544 [Abstract] [Full Text] [Related]
4. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 2. Benchmark in the CSAR-2010 scoring exercise. Sulea T, Cui Q, Purisima EO. J Chem Inf Model; 2011 Sep 26; 51(9):2066-81. PubMed ID: 21714553 [Abstract] [Full Text] [Related]
5. Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. Chen Y, Wiesmann C, Fuh G, Li B, Christinger HW, McKay P, de Vos AM, Lowman HB. J Mol Biol; 1999 Nov 05; 293(4):865-81. PubMed ID: 10543973 [Abstract] [Full Text] [Related]
6. Dissection of binding interactions in the complex between the anti-lysozyme antibody HyHEL-63 and its antigen. Li Y, Urrutia M, Smith-Gill SJ, Mariuzza RA. Biochemistry; 2003 Jan 14; 42(1):11-22. PubMed ID: 12515535 [Abstract] [Full Text] [Related]
7. Antibody Affinity Maturation by Computational Design. Kuroda D, Tsumoto K. Methods Mol Biol; 2018 Jan 14; 1827():15-34. PubMed ID: 30196490 [Abstract] [Full Text] [Related]
8. AttABseq: an attention-based deep learning prediction method for antigen-antibody binding affinity changes based on protein sequences. Jin R, Ye Q, Wang J, Cao Z, Jiang D, Wang T, Kang Y, Xu W, Hsieh CY, Hou T. Brief Bioinform; 2024 May 23; 25(4):. PubMed ID: 38960407 [Abstract] [Full Text] [Related]
9. Assessment of software methods for estimating protein-protein relative binding affinities. Gonzalez TR, Martin KP, Barnes JE, Patel JS, Ytreberg FM. PLoS One; 2020 May 23; 15(12):e0240573. PubMed ID: 33347442 [Abstract] [Full Text] [Related]
11. Machine learning in computational docking. Khamis MA, Gomaa W, Ahmed WF. Artif Intell Med; 2015 Mar 23; 63(3):135-52. PubMed ID: 25724101 [Abstract] [Full Text] [Related]
12. Energetic and dynamic aspects of the affinity maturation process: characterizing improved variants from the bevacizumab antibody with molecular simulations. Corrada D, Colombo G. J Chem Inf Model; 2013 Nov 25; 53(11):2937-50. PubMed ID: 24168661 [Abstract] [Full Text] [Related]
13. Evaluation of the Wilma-SIE Virtual Screening Method in Community Structure-Activity Resource 2013 and 2014 Blind Challenges. Hogues H, Sulea T, Purisima EO. J Chem Inf Model; 2016 Jun 27; 56(6):955-64. PubMed ID: 26282162 [Abstract] [Full Text] [Related]
14. Affinity improvement of a therapeutic antibody by structure-based computational design: generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex. Kiyoshi M, Caaveiro JM, Miura E, Nagatoishi S, Nakakido M, Soga S, Shirai H, Kawabata S, Tsumoto K. PLoS One; 2014 Jun 27; 9(1):e87099. PubMed ID: 24475232 [Abstract] [Full Text] [Related]
15. Solvated interaction energy: from small-molecule to antibody drug design. Purisima EO, Corbeil CR, Gaudreault F, Wei W, Deprez C, Sulea T. Front Mol Biosci; 2023 Jun 27; 10():1210576. PubMed ID: 37351549 [Abstract] [Full Text] [Related]
16. FURSMASA: a new approach to rapid scoring functions that uses a MD-averaged potential energy grid and a solvent-accessible surface area term with parameters GA fit to experimental data. Pearlman DA, Rao BG, Charifson P. Proteins; 2008 May 15; 71(3):1519-38. PubMed ID: 18300249 [Abstract] [Full Text] [Related]
17. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction. Ashtawy HM, Mahapatra NR. IEEE/ACM Trans Comput Biol Bioinform; 2012 May 15; 9(5):1301-13. PubMed ID: 22411892 [Abstract] [Full Text] [Related]
18. Optimizing Antibody-Antigen Binding Affinities with the ADAPT Platform. Sulea T, Deprez C, Corbeil CR, Purisima EO. Methods Mol Biol; 2023 May 15; 2552():361-374. PubMed ID: 36346603 [Abstract] [Full Text] [Related]
19. Engineering protein therapeutics: predictive performances of a structure-based virtual affinity maturation protocol. Oberlin M, Kroemer R, Mikol V, Minoux H, Tastan E, Baurin N. J Chem Inf Model; 2012 Aug 27; 52(8):2204-14. PubMed ID: 22788756 [Abstract] [Full Text] [Related]
20. PBSA_E: A PBSA-Based Free Energy Estimator for Protein-Ligand Binding Affinity. Liu X, Liu J, Zhu T, Zhang L, He X, Zhang JZ. J Chem Inf Model; 2016 May 23; 56(5):854-61. PubMed ID: 27088302 [Abstract] [Full Text] [Related] Page: [Next] [New Search]