These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 27378220

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Air-assisted liquid-liquid microextraction used for the rapid determination of organophosphorus pesticides in juice samples.
    You X, Xing Z, Liu F, Jiang N.
    J Chromatogr A; 2013 Oct 11; 1311():41-7. PubMed ID: 24021833
    [Abstract] [Full Text] [Related]

  • 23. Dispersive microextraction based on "magnetic water" coupled to gas chromatography/mass spectrometry for the fast determination of organophosphorus pesticides in cold-pressed vegetable oils.
    Zhao Q, Lu Q, Yu QW, Feng YQ.
    J Agric Food Chem; 2013 Jun 05; 61(22):5397-403. PubMed ID: 23687955
    [Abstract] [Full Text] [Related]

  • 24. QuEChERS followed by dispersive liquid-liquid microextraction based on solidification of floating organic droplet method for organochlorine pesticides analysis in fish.
    Wang XC, Shu B, Li S, Yang ZG, Qiu B.
    Talanta; 2017 Jan 01; 162():90-97. PubMed ID: 27837889
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Validated dispersive liquid-liquid microextraction for analysis of organophosphorous pesticides in water.
    Alves AC, Gonçalves MM, Bernardo MM, Mendes BS.
    J Sep Sci; 2011 Jun 01; 34(11):1326-32. PubMed ID: 21538877
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Polyol-enhanced dispersive liquid-liquid microextraction coupled with gas chromatography and nitrogen phosphorous detection for the determination of organophosphorus pesticides from aqueous samples, fruit juices, and vegetables.
    Farajzadeh MA, Afshar Mogaddam MR, Alizadeh Nabil AA.
    J Sep Sci; 2015 Dec 01; 38(23):4086-94. PubMed ID: 26420025
    [Abstract] [Full Text] [Related]

  • 32. Preconcentration of organochlorine pesticides in aqueous samples by dispersive liquid-liquid microextraction based on solidification of floating organic drop after SPE with multiwalled carbon nanotubes.
    Mirzaei M, Rakh M.
    J Sep Sci; 2014 Jan 01; 37(1-2):114-9. PubMed ID: 24288158
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. MIL-101 (Cr) @ graphene oxide-reinforced hollow fiber solid-phase microextraction coupled with high-performance liquid chromatography to determine diazinon and chlorpyrifos in tomato, cucumber and agricultural water.
    Darvishnejad F, Raoof JB, Ghani M.
    Anal Chim Acta; 2020 Dec 15; 1140():99-110. PubMed ID: 33218494
    [Abstract] [Full Text] [Related]

  • 39. [Determination of 61 organophosphorous pesticide residues in fruits, vegetables, milk, vegetable oils and animal muscles by dispersive solid-phase extraction and ultra performance liquid chromatography-tandem mass spectrometry].
    Ye R, Su J.
    Se Pu; 2011 Jul 15; 29(7):618-23. PubMed ID: 22097787
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.