These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
187 related items for PubMed ID: 27379729
1. Life cycle water footprint of hydrogenation-derived renewable diesel production from lignocellulosic biomass. Wong A, Zhang H, Kumar A. Water Res; 2016 Oct 01; 102():330-345. PubMed ID: 27379729 [Abstract] [Full Text] [Related]
2. Life-cycle assessment of transportation biofuels from hydrothermal liquefaction of forest residues in British Columbia. Nie Y, Bi X. Biotechnol Biofuels; 2018 Oct 01; 11():23. PubMed ID: 29434666 [Abstract] [Full Text] [Related]
4. Comparing Life-Cycle Emissions of Biofuels for Marine Applications: Hydrothermal Liquefaction of Wet Wastes, Pyrolysis of Wood, Fischer-Tropsch Synthesis of Landfill Gas, and Solvolysis of Wood. Masum FH, Zaimes GG, Tan ECD, Li S, Dutta A, Ramasamy KK, Hawkins TR. Environ Sci Technol; 2023 Aug 29; 57(34):12701-12712. PubMed ID: 37590157 [Abstract] [Full Text] [Related]
6. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ. Bioresour Technol; 2012 Apr 29; 109():178-87. PubMed ID: 22285293 [Abstract] [Full Text] [Related]
7. Comprehensive characterization of hydrothermal liquefaction products obtained from woody biomass under various alkali catalyst concentrations. Hwang H, Lee JH, Choi IG, Choi JW. Environ Technol; 2019 May 29; 40(13):1657-1667. PubMed ID: 29333927 [Abstract] [Full Text] [Related]
8. Development of water requirement factors for biomass conversion pathway. Singh S, Kumar A. Bioresour Technol; 2011 Jan 29; 102(2):1316-28. PubMed ID: 20888758 [Abstract] [Full Text] [Related]
10. Environmental impact comparison of wheat straw fast pyrolysis systems with different hydrogen production processes based on life cycle assessment. Zheng X, Zhong Z, Zhang B, Du H, Wang W, Li Q. Waste Manag Res; 2022 Jun 29; 40(6):654-664. PubMed ID: 34579599 [Abstract] [Full Text] [Related]
16. Dynamic life-cycle carbon analysis for fast pyrolysis biofuel produced from pine residues: implications of carbon temporal effects. Lan K, Ou L, Park S, Kelley SS, Nepal P, Kwon H, Cai H, Yao Y. Biotechnol Biofuels; 2021 Sep 29; 14(1):191. PubMed ID: 34587989 [Abstract] [Full Text] [Related]
17. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment. Liu C, Huang Y, Wang X, Tai Y, Liu L, Liu H. Integr Environ Assess Manag; 2018 Jan 29; 14(1):139-149. PubMed ID: 28796442 [Abstract] [Full Text] [Related]
18. Co-Hydrothermal Liquefaction of algal and lignocellulosic biomass: Status and perspectives. Sahoo A, Saini K, Jindal M, Bhaskar T, Pant KK. Bioresour Technol; 2021 Dec 29; 342():125948. PubMed ID: 34571330 [Abstract] [Full Text] [Related]
19. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water. Gai C, Li Y, Peng N, Fan A, Liu Z. Bioresour Technol; 2015 Jun 29; 185():240-5. PubMed ID: 25770472 [Abstract] [Full Text] [Related]
20. Life cycle water footprint comparison of biomass-to-hydrogen and coal-to-hydrogen processes. Cui P, Yao D, Ma Z, Shen Y, Liu X, Li K, Zhu Z, Liu Z, Gao J, Wang Y, Yang S. Sci Total Environ; 2021 Jun 15; 773():145056. PubMed ID: 33582341 [Abstract] [Full Text] [Related] Page: [Next] [New Search]