These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


172 related items for PubMed ID: 27408989

  • 1. Jatropha curcas and assisted phytoremediation of a mine tailing with biochar and a mycorrhizal fungus.
    González-Chávez MD, Carrillo-González R, Hernández Godínez MI, Evangelista Lozano S.
    Int J Phytoremediation; 2017 Feb; 19(2):174-182. PubMed ID: 27408989
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Interactive effect of compost application and inoculation with the fungus Claroideoglomus claroideum in Oenothera picensis plants growing in mine tailings.
    Pérez R, Tapia Y, Antilén M, Casanova M, Vidal C, Santander C, Aponte H, Cornejo P.
    Ecotoxicol Environ Saf; 2021 Jan 15; 208():111495. PubMed ID: 33099139
    [Abstract] [Full Text] [Related]

  • 4. The influences of arbuscular mycorrhizal fungus on phytostabilization of lead/zinc tailings using four plant species.
    Gu HH, Zhou Z, Gao YQ, Yuan XT, Ai YJ, Zhang JY, Zuo WZ, Taylor AA, Nan SQ, Li FP.
    Int J Phytoremediation; 2017 Aug 03; 19(8):739-745. PubMed ID: 28537795
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Phytoremediation of heavy metal contaminated soil by Jatropha curcas.
    Chang FC, Ko CH, Tsai MJ, Wang YN, Chung CY.
    Ecotoxicology; 2014 Dec 03; 23(10):1969-78. PubMed ID: 25236867
    [Abstract] [Full Text] [Related]

  • 7. Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi.
    Moreira H, Pereira SI, Marques AP, Rangel AO, Castro PM.
    Environ Sci Pollut Res Int; 2016 Apr 03; 23(7):6940-50. PubMed ID: 26676544
    [Abstract] [Full Text] [Related]

  • 8. Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil.
    Rafique M, Ortas I, Rizwan M, Sultan T, Chaudhary HJ, Işik M, Aydin O.
    Environ Sci Pollut Res Int; 2019 Jul 03; 26(20):20689-20700. PubMed ID: 31104234
    [Abstract] [Full Text] [Related]

  • 9. Phytoremediation of highly contaminated mining soils by Jatropha curcas L. and production of catalytic carbons from the generated biomass.
    Álvarez-Mateos P, Alés-Álvarez FJ, García-Martín JF.
    J Environ Manage; 2019 Feb 01; 231():886-895. PubMed ID: 30419444
    [Abstract] [Full Text] [Related]

  • 10. Zea mays cultivation, biochar, and arbuscular mycorrhizal fungal inoculation influenced lead immobilization.
    Jia Q, Sun J, Gan Q, Shi N-N, Fu S.
    Microbiol Spectr; 2024 Apr 02; 12(4):e0342723. PubMed ID: 38393320
    [Abstract] [Full Text] [Related]

  • 11. Jatropha curcas: a potential crop for phytoremediation of coal fly ash.
    Jamil S, Abhilash PC, Singh N, Sharma PN.
    J Hazard Mater; 2009 Dec 15; 172(1):269-75. PubMed ID: 19640648
    [Abstract] [Full Text] [Related]

  • 12. Recovering a copper mine soil using organic amendments and phytomanagement with Brassica juncea L.
    Rodríguez-Vila A, Covelo EF, Forján R, Asensio V.
    J Environ Manage; 2015 Jan 01; 147():73-80. PubMed ID: 25262389
    [Abstract] [Full Text] [Related]

  • 13. The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing.
    Kohler J, Caravaca F, Azcón R, Díaz G, Roldán A.
    Sci Total Environ; 2015 May 01; 514():42-8. PubMed ID: 25659304
    [Abstract] [Full Text] [Related]

  • 14. Phytoremediation assisted by mycorrhizal fungi of a Mexican defunct lead-acid battery recycling site.
    González-Chávez MDCA, Carrillo-González R, Cuellar-Sánchez A, Delgado-Alvarado A, Suárez-Espinosa J, Ríos-Leal E, Solís-Domínguez FA, Maldonado-Mendoza IE.
    Sci Total Environ; 2019 Feb 10; 650(Pt 2):3134-3144. PubMed ID: 30373090
    [Abstract] [Full Text] [Related]

  • 15. The effects of arbuscular mycorrhizal fungi on sex-specific responses to Pb pollution in Populus cathayana.
    Chen L, Hu X, Yang W, Xu Z, Zhang D, Gao S.
    Ecotoxicol Environ Saf; 2015 Mar 10; 113():460-8. PubMed ID: 25553418
    [Abstract] [Full Text] [Related]

  • 16. Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb-contaminated soils.
    Souza LA, Andrade SA, Souza SC, Schiavinato MA.
    Int J Phytoremediation; 2013 Mar 10; 15(5):465-76. PubMed ID: 23488172
    [Abstract] [Full Text] [Related]

  • 17. Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species.
    de Melo RW, Schneider J, de Souza CE, Sousa SC, Guimarães GL, de Souza MF.
    Int J Phytoremediation; 2014 Mar 10; 16(7-12):840-58. PubMed ID: 24933888
    [Abstract] [Full Text] [Related]

  • 18. Mycorrhizo-remediation of lead/zinc mine tailings using vetiver: a field study.
    Wu SC, Wong CC, Shu WS, Khan AG, Wong MH.
    Int J Phytoremediation; 2011 Jan 10; 13(1):61-74. PubMed ID: 21598768
    [Abstract] [Full Text] [Related]

  • 19. Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression.
    Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S.
    Ann Bot; 2010 Nov 10; 106(5):791-802. PubMed ID: 20810743
    [Abstract] [Full Text] [Related]

  • 20. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil.
    Hassan SE, Hijri M, St-Arnaud M.
    N Biotechnol; 2013 Sep 25; 30(6):780-7. PubMed ID: 23876814
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.