These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


336 related items for PubMed ID: 27414687

  • 1. Seven Passive 1-h Hypoxia Exposures Do Not Prevent AMS in Susceptible Individuals.
    Faulhaber M, Pocecco E, Gatterer H, Niedermeier M, Huth M, Dünnwald T, Menz V, Bernardi L, Burtscher M.
    Med Sci Sports Exerc; 2016 Dec; 48(12):2563-2570. PubMed ID: 27414687
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Effect of repeated normobaric hypoxia exposures during sleep on acute mountain sickness, exercise performance, and sleep during exposure to terrestrial altitude.
    Fulco CS, Muza SR, Beidleman BA, Demes R, Staab JE, Jones JE, Cymerman A.
    Am J Physiol Regul Integr Comp Physiol; 2011 Feb; 300(2):R428-36. PubMed ID: 21123763
    [Abstract] [Full Text] [Related]

  • 4. Acute mountain sickness is not repeatable across two 12-hour normobaric hypoxia exposures.
    MacInnis MJ, Koch S, MacLeod KE, Carter EA, Jain R, Koehle MS, Rupert JL.
    Wilderness Environ Med; 2014 Jun; 25(2):143-51. PubMed ID: 24631230
    [Abstract] [Full Text] [Related]

  • 5. Efficacy of residence at moderate versus low altitude on reducing acute mountain sickness in men following rapid ascent to 4300 m.
    Staab JE, Beidleman BA, Muza SR, Fulco CS, Rock PB, Cymerman A.
    High Alt Med Biol; 2013 Mar; 14(1):13-8. PubMed ID: 23537255
    [Abstract] [Full Text] [Related]

  • 6. Sleeping in moderate hypoxia at home for prevention of acute mountain sickness (AMS): a placebo-controlled, randomized double-blind study.
    Dehnert C, Böhm A, Grigoriev I, Menold E, Bärtsch P.
    Wilderness Environ Med; 2014 Sep; 25(3):263-71. PubMed ID: 24931591
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Acute mountain sickness, chemosensitivity, and cardiorespiratory responses in humans exposed to hypobaric and normobaric hypoxia.
    Richard NA, Sahota IS, Widmer N, Ferguson S, Sheel AW, Koehle MS.
    J Appl Physiol (1985); 2014 Apr 01; 116(7):945-52. PubMed ID: 23823153
    [Abstract] [Full Text] [Related]

  • 9. MEDEX 2015: Heart Rate Variability Predicts Development of Acute Mountain Sickness.
    Sutherland A, Freer J, Evans L, Dolci A, Crotti M, Macdonald JH.
    High Alt Med Biol; 2017 Sep 01; 18(3):199-208. PubMed ID: 28418725
    [Abstract] [Full Text] [Related]

  • 10. Respiratory alkalinization and posterior cerebral artery dilatation predict acute mountain sickness severity during 10 h normobaric hypoxia.
    Barclay H, Mukerji S, Kayser B, O'Donnell T, Tzeng YC, Hill S, Knapp K, Legg S, Frei D, Fan JL.
    Exp Physiol; 2021 Jan 01; 106(1):175-190. PubMed ID: 33347666
    [Abstract] [Full Text] [Related]

  • 11. Changes in cardiac autonomic activity during a passive 8 hour acute exposure to 5 500 m normobaric hypoxia are not related to the development of acute mountain sickness.
    Wille M, Mairer K, Gatterer H, Philippe M, Faulhaber M, Burtscher M.
    Int J Sports Med; 2012 Mar 01; 33(3):186-91. PubMed ID: 22290324
    [Abstract] [Full Text] [Related]

  • 12. Remote ischemic preconditioning does not prevent acute mountain sickness after rapid ascent to 3,450 m.
    Berger MM, Macholz F, Lehmann L, Dankl D, Hochreiter M, Bacher B, Bärtsch P, Mairbäurl H.
    J Appl Physiol (1985); 2017 Nov 01; 123(5):1228-1234. PubMed ID: 28798201
    [Abstract] [Full Text] [Related]

  • 13. Intermittent altitude exposures reduce acute mountain sickness at 4300 m.
    Beidleman BA, Muza SR, Fulco CS, Cymerman A, Ditzler D, Stulz D, Staab JE, Skrinar GS, Lewis SF, Sawka MN.
    Clin Sci (Lond); 2004 Mar 01; 106(3):321-8. PubMed ID: 14561214
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Short-term intermittent hypoxia reduces the severity of acute mountain sickness.
    Wille M, Gatterer H, Mairer K, Philippe M, Schwarzenbacher H, Faulhaber M, Burtscher M.
    Scand J Med Sci Sports; 2012 Oct 01; 22(5):e79-85. PubMed ID: 22853822
    [Abstract] [Full Text] [Related]

  • 16. Prediction of the susceptibility to AMS in simulated altitude.
    Burtscher M, Szubski C, Faulhaber M.
    Sleep Breath; 2008 May 01; 12(2):103-8. PubMed ID: 18057977
    [Abstract] [Full Text] [Related]

  • 17. Study Looking at End Expiratory Pressure for Altitude Illness Decrease (SLEEP-AID).
    Lipman GS, Kanaan NC, Phillips C, Pomeranz D, Cain P, Fontes K, Higbee B, Meyer C, Shaheen M, Wentworth S, Walsh D.
    High Alt Med Biol; 2015 Jun 01; 16(2):154-61. PubMed ID: 25950723
    [Abstract] [Full Text] [Related]

  • 18. Dietary nitrate supplementation increases acute mountain sickness severity and sense of effort during hypoxic exercise.
    Rossetti GMK, Macdonald JH, Wylie LJ, Little SJ, Newton V, Wood B, Hawkins KA, Beddoe R, Davies HE, Oliver SJ.
    J Appl Physiol (1985); 2017 Oct 01; 123(4):983-992. PubMed ID: 28684588
    [Abstract] [Full Text] [Related]

  • 19. Is normobaric hypoxia an effective treatment for sustaining previously acquired altitude acclimatization?
    Beidleman BA, Fulco CS, Cadarette BS, Cymerman A, Buller MJ, Salgado RM, Posch AM, Staab JE, Sils IV, Yurkevicius BR, Luippold AJ, Welles AP, Muza SR.
    J Appl Physiol (1985); 2017 Nov 01; 123(5):1214-1227. PubMed ID: 28705998
    [Abstract] [Full Text] [Related]

  • 20. Preacclimatization in simulated altitudes.
    Burtscher M, Brandstätter E, Gatterer H.
    Sleep Breath; 2008 May 01; 12(2):109-14. PubMed ID: 18030513
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.