These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Stagnant forearc mantle wedge inferred from mapping of shear-wave anisotropy using S-net seafloor seismometers. Uchida N, Nakajima J, Wang K, Takagi R, Yoshida K, Nakayama T, Hino R, Okada T, Asano Y. Nat Commun; 2020 Nov 10; 11(1):5676. PubMed ID: 33173070 [Abstract] [Full Text] [Related]
4. An inverted continental Moho and serpentinization of the forearc mantle. Bostock MG, Hyndman RD, Rondenay S, Peacock SM. Nature; 2002 May 30; 417(6888):536-8. PubMed ID: 12037564 [Abstract] [Full Text] [Related]
5. Tracing halogen and B cycling in subduction zones based on obducted, subducted and forearc serpentinites of the Dominican Republic. Pagé L, Hattori K. Sci Rep; 2017 Dec 19; 7(1):17776. PubMed ID: 29259321 [Abstract] [Full Text] [Related]
6. Understanding subduction infancy to mature subduction in Southwest Japan via the self-consistent formation of a weak slab interface. Lee C, Kim Y. Sci Rep; 2023 Dec 05; 13(1):21425. PubMed ID: 38052949 [Abstract] [Full Text] [Related]
7. Role of warm subduction in the seismological properties of the forearc mantle: An example from southwest Japan. Lee C, Kim Y. Sci Adv; 2021 Jul 05; 7(28):. PubMed ID: 34244142 [Abstract] [Full Text] [Related]
8. Carbonates and intermediate-depth seismicity: Stable and unstable shear in altered subducting plates and overlying mantle. Prakash A, Holyoke CW, Kelemen PB, Kirby SH, Kronenberg AK, Lamb WM. Proc Natl Acad Sci U S A; 2023 May 23; 120(21):e2219076120. PubMed ID: 37186835 [Abstract] [Full Text] [Related]
10. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens. Hansen SM, Schmandt B, Levander A, Kiser E, Vidale JE, Abers GA, Creager KC. Nat Commun; 2016 Nov 01; 7():13242. PubMed ID: 27802263 [Abstract] [Full Text] [Related]
11. Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems. Kneller EA, van Keken PE. Nature; 2007 Dec 20; 450(7173):1222-5. PubMed ID: 18097407 [Abstract] [Full Text] [Related]
12. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge. Jadamec MA, Billen MI. Nature; 2010 May 20; 465(7296):338-41. PubMed ID: 20485433 [Abstract] [Full Text] [Related]
13. Highly oxidising fluids generated during serpentinite breakdown in subduction zones. Debret B, Sverjensky DA. Sci Rep; 2017 Sep 04; 7(1):10351. PubMed ID: 28871200 [Abstract] [Full Text] [Related]
14. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. Cai C, Wiens DA, Shen W, Eimer M. Nature; 2018 Nov 04; 563(7731):389-392. PubMed ID: 30429549 [Abstract] [Full Text] [Related]
15. Anisotropic thermal conductivity of antigorite along slab subduction impacts seismicity of intermediate-depth earthquakes. Chien YH, Marzotto E, Tsao YC, Hsieh WP. Nat Commun; 2024 Jun 18; 15(1):5198. PubMed ID: 38890301 [Abstract] [Full Text] [Related]
16. Seismic imaging of mantle wedge corner flow and arc magmatism. Hasegawa A. Proc Jpn Acad Ser B Phys Biol Sci; 2018 Jun 18; 94(5):217-234. PubMed ID: 29760317 [Abstract] [Full Text] [Related]
17. 3D anisotropic structure of the Japan subduction zone. Wang Z, Zhao D. Sci Adv; 2021 Jan 18; 7(4):. PubMed ID: 33523923 [Abstract] [Full Text] [Related]
18. Trench-parallel anisotropy produced by foundering of arc lower crust. Behn MD, Hirth G, Kelemen PB. Science; 2007 Jul 06; 317(5834):108-11. PubMed ID: 17615354 [Abstract] [Full Text] [Related]