These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
307 related items for PubMed ID: 27447844
1. Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes. Cha H, Chun JM, Sotelo J, Miljkovic N. ACS Nano; 2016 Sep 27; 10(9):8223-32. PubMed ID: 27447844 [Abstract] [Full Text] [Related]
2. Enhanced Jumping-Droplet Departure. Kim MK, Cha H, Birbarah P, Chavan S, Zhong C, Xu Y, Miljkovic N. Langmuir; 2015 Dec 15; 31(49):13452-66. PubMed ID: 26571384 [Abstract] [Full Text] [Related]
3. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures. Zhang P, Maeda Y, Lv F, Takata Y, Orejon D. ACS Appl Mater Interfaces; 2017 Oct 11; 9(40):35391-35403. PubMed ID: 28925681 [Abstract] [Full Text] [Related]
4. Hierarchical Condensation. Yan X, Chen F, Sett S, Chavan S, Li H, Feng L, Li L, Zhao F, Zhao C, Huang Z, Miljkovic N. ACS Nano; 2019 Jul 23; 13(7):8169-8184. PubMed ID: 31265236 [Abstract] [Full Text] [Related]
5. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces. Birbarah P, Li Z, Pauls A, Miljkovic N. Langmuir; 2015 Jul 21; 31(28):7885-96. PubMed ID: 26110977 [Abstract] [Full Text] [Related]
6. Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove. Lu D, Zhao M, Zhang H, Yang Y, Zheng Y. Langmuir; 2020 May 19; 36(19):5444-5453. PubMed ID: 32311257 [Abstract] [Full Text] [Related]
7. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces. Chen X, Patel RS, Weibel JA, Garimella SV. Sci Rep; 2016 Jan 04; 6():18649. PubMed ID: 26725512 [Abstract] [Full Text] [Related]
9. Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves. Peng Q, Yan X, Li J, Li L, Cha H, Ding Y, Dang C, Jia L, Miljkovic N. Langmuir; 2020 Aug 18; 36(32):9510-9522. PubMed ID: 32689802 [Abstract] [Full Text] [Related]
12. How coalescing droplets jump. Enright R, Miljkovic N, Sprittles J, Nolan K, Mitchell R, Wang EN. ACS Nano; 2014 Oct 28; 8(10):10352-62. PubMed ID: 25171210 [Abstract] [Full Text] [Related]
13. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces. Chen X, Weibel JA, Garimella SV. ACS Omega; 2017 Jun 30; 2(6):2883-2890. PubMed ID: 31457623 [Abstract] [Full Text] [Related]
14. Departure of condensation droplets on superhydrophobic surfaces. Lv C, Hao P, Yao Z, Niu F. Langmuir; 2015 Mar 03; 31(8):2414-20. PubMed ID: 25651077 [Abstract] [Full Text] [Related]
15. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation. Wen R, Xu S, Zhao D, Lee YC, Ma X, Yang R. ACS Appl Mater Interfaces; 2017 Dec 27; 9(51):44911-44921. PubMed ID: 29214806 [Abstract] [Full Text] [Related]
16. Insights into the Impact of Surface Hydrophobicity on Droplet Coalescence and Jumping Dynamics. Li H, Yang W, Aili A, Zhang T. Langmuir; 2017 Aug 29; 33(34):8574-8581. PubMed ID: 28767250 [Abstract] [Full Text] [Related]
17. Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces. Yan X, Qin Y, Chen F, Zhao G, Sett S, Hoque MJ, Rabbi KF, Zhang X, Wang Z, Li L, Chen F, Feng J, Miljkovic N. ACS Nano; 2020 Oct 27; 14(10):12796-12809. PubMed ID: 33052666 [Abstract] [Full Text] [Related]
18. Droplet Jumping: Effects of Droplet Size, Surface Structure, Pinning, and Liquid Properties. Yan X, Zhang L, Sett S, Feng L, Zhao C, Huang Z, Vahabi H, Kota AK, Chen F, Miljkovic N. ACS Nano; 2019 Feb 26; 13(2):1309-1323. PubMed ID: 30624899 [Abstract] [Full Text] [Related]