These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


339 related items for PubMed ID: 27447861

  • 1. Potential role of the N-MYC downstream-regulated gene family in reprogramming cancer metabolism under hypoxia.
    Lee GY, Chun YS, Shin HW, Park JW.
    Oncotarget; 2016 Aug 30; 7(35):57442-57451. PubMed ID: 27447861
    [Abstract] [Full Text] [Related]

  • 2. Carrot and stick: HIF-alpha engages c-Myc in hypoxic adaptation.
    Huang LE.
    Cell Death Differ; 2008 Apr 30; 15(4):672-7. PubMed ID: 18188166
    [Abstract] [Full Text] [Related]

  • 3. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells.
    Sharma BK, Kolhe R, Black SM, Keller JR, Mivechi NF, Satyanarayana A.
    FASEB J; 2016 Jan 30; 30(1):262-75. PubMed ID: 26330493
    [Abstract] [Full Text] [Related]

  • 4. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P, Schmidberger H, Mayer A.
    Int J Radiat Biol; 2019 Jul 30; 95(7):912-919. PubMed ID: 30822194
    [Abstract] [Full Text] [Related]

  • 5. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells.
    Liu Z, Sun Y, Tan S, Liu L, Hu S, Huo H, Li M, Cui Q, Yu M.
    Tumour Biol; 2016 May 30; 37(5):6661-71. PubMed ID: 26646563
    [Abstract] [Full Text] [Related]

  • 6. Transglutaminase 2 reprogramming of glucose metabolism in mammary epithelial cells via activation of inflammatory signaling pathways.
    Kumar S, Donti TR, Agnihotri N, Mehta K.
    Int J Cancer; 2014 Jun 15; 134(12):2798-807. PubMed ID: 24477458
    [Abstract] [Full Text] [Related]

  • 7. Energy regulation: HIF MXIes it up with the C-MYC powerhouse.
    Sutphin PD, Giaccia AJ, Chan DA.
    Dev Cell; 2007 Jun 15; 12(6):845-6. PubMed ID: 17543856
    [Abstract] [Full Text] [Related]

  • 8. Oncogenic regulation of tumor metabolic reprogramming.
    Tarrado-Castellarnau M, de Atauri P, Cascante M.
    Oncotarget; 2016 Sep 20; 7(38):62726-62753. PubMed ID: 28040803
    [Abstract] [Full Text] [Related]

  • 9. MYC-induced cancer cell energy metabolism and therapeutic opportunities.
    Dang CV, Le A, Gao P.
    Clin Cancer Res; 2009 Nov 01; 15(21):6479-83. PubMed ID: 19861459
    [Abstract] [Full Text] [Related]

  • 10. Oroxylin A regulates glucose metabolism in response to hypoxic stress with the involvement of Hypoxia-inducible factor-1 in human hepatoma HepG2 cells.
    Dai Q, Yin Q, Wei L, Zhou Y, Qiao C, Guo Y, Wang X, Ma S, Lu N.
    Mol Carcinog; 2016 Aug 01; 55(8):1275-89. PubMed ID: 26259145
    [Abstract] [Full Text] [Related]

  • 11. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity.
    Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL.
    Cancer Cell; 2007 May 01; 11(5):407-20. PubMed ID: 17482131
    [Abstract] [Full Text] [Related]

  • 12. PKM2 contributes to cancer metabolism.
    Wong N, Ojo D, Yan J, Tang D.
    Cancer Lett; 2015 Jan 28; 356(2 Pt A):184-91. PubMed ID: 24508027
    [Abstract] [Full Text] [Related]

  • 13. c-MYC inhibition impairs hypoxia response in glioblastoma multiforme.
    Mongiardi MP, Savino M, Falchetti ML, Illi B, Bozzo F, Valle C, Helmer-Citterich M, Ferrè F, Nasi S, Levi A.
    Oncotarget; 2016 May 31; 7(22):33257-71. PubMed ID: 27119353
    [Abstract] [Full Text] [Related]

  • 14. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy.
    Yu L, Chen X, Wang L, Chen S.
    Oncotarget; 2016 Jun 21; 7(25):38908-38926. PubMed ID: 26918353
    [Abstract] [Full Text] [Related]

  • 15. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function.
    Jensen KS, Binderup T, Jensen KT, Therkelsen I, Borup R, Nilsson E, Multhaupt H, Bouchard C, Quistorff B, Kjaer A, Landberg G, Staller P.
    EMBO J; 2011 Nov 16; 30(22):4554-70. PubMed ID: 21915097
    [Abstract] [Full Text] [Related]

  • 16. Wortmannin influences hypoxia-inducible factor-1 alpha expression and glycolysis in esophageal carcinoma cells.
    Zeng L, Zhou HY, Tang NN, Zhang WF, He GJ, Hao B, Feng YD, Zhu H.
    World J Gastroenterol; 2016 May 28; 22(20):4868-80. PubMed ID: 27239113
    [Abstract] [Full Text] [Related]

  • 17. Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis.
    Wilde BR, Ayer DE.
    Br J Cancer; 2015 Dec 01; 113(11):1529-33. PubMed ID: 26469830
    [Abstract] [Full Text] [Related]

  • 18. Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming.
    Zwaans BM, Lombard DB.
    Dis Model Mech; 2014 Sep 01; 7(9):1023-32. PubMed ID: 25085992
    [Abstract] [Full Text] [Related]

  • 19. Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target.
    Infantino V, Santarsiero A, Convertini P, Todisco S, Iacobazzi V.
    Int J Mol Sci; 2021 May 27; 22(11):. PubMed ID: 34071836
    [Abstract] [Full Text] [Related]

  • 20. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U, Sotgia F, Lisanti MP.
    Semin Oncol; 2014 Apr 27; 41(2):195-216. PubMed ID: 24787293
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.