These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 27448996

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052.
    Liu ZY, Yao XQ, Zhang Q, Liu Z, Wang ZJ, Zhang YY, Li FL.
    Appl Environ Microbiol; 2017 Apr 01; 83(7):. PubMed ID: 28130305
    [Abstract] [Full Text] [Related]

  • 3. Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052.
    Milne CB, Eddy JA, Raju R, Ardekani S, Kim PJ, Senger RS, Jin YS, Blaschek HP, Price ND.
    BMC Syst Biol; 2011 Aug 16; 5():130. PubMed ID: 21846360
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Comparison of expression of key sporulation, solventogenic and acetogenic genes in C. beijerinckii NRRL B-598 and its mutant strain overexpressing spo0A.
    Kolek J, Diallo M, Vasylkivska M, Branska B, Sedlar K, López-Contreras AM, Patakova P.
    Appl Microbiol Biotechnol; 2017 Nov 16; 101(22):8279-8291. PubMed ID: 28990140
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Characterization of a Clostridium beijerinckii spo0A mutant and its application for butyl butyrate production.
    Seo SO, Wang Y, Lu T, Jin YS, Blaschek HP.
    Biotechnol Bioeng; 2017 Jan 16; 114(1):106-112. PubMed ID: 27474812
    [Abstract] [Full Text] [Related]

  • 9. Recent advances in ABE fermentation: hyper-butanol producing Clostridium beijerinckii BA101.
    Qureshi N, Blaschek HP.
    J Ind Microbiol Biotechnol; 2001 Nov 16; 27(5):287-91. PubMed ID: 11781803
    [Abstract] [Full Text] [Related]

  • 10. Elucidating and alleviating impacts of lignocellulose-derived microbial inhibitors on Clostridium beijerinckii during fermentation of Miscanthus giganteus to butanol.
    Zhang Y, Ezeji TC.
    J Ind Microbiol Biotechnol; 2014 Oct 16; 41(10):1505-16. PubMed ID: 25085743
    [Abstract] [Full Text] [Related]

  • 11. Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis.
    Shi Z, Blaschek HP.
    Appl Environ Microbiol; 2008 Dec 16; 74(24):7709-14. PubMed ID: 18849451
    [Abstract] [Full Text] [Related]

  • 12. Transcription profiling of butanol producer Clostridium beijerinckii NRRL B-598 using RNA-Seq.
    Sedlar K, Koscova P, Vasylkivska M, Branska B, Kolek J, Kupkova K, Patakova P, Provaznik I.
    BMC Genomics; 2018 May 30; 19(1):415. PubMed ID: 29843608
    [Abstract] [Full Text] [Related]

  • 13. Butanol production from hemicellulosic hydrolysate of corn fiber by a Clostridium beijerinckii mutant with high inhibitor-tolerance.
    Guo T, He AY, Du TF, Zhu DW, Liang DF, Jiang M, Wei P, Ouyang PK.
    Bioresour Technol; 2013 May 30; 135():379-85. PubMed ID: 22985825
    [Abstract] [Full Text] [Related]

  • 14. Fermentation of rice bran and defatted rice bran for butanol 5 production using clostridium beijerinckii NCIMB 8052.
    Lee J, Seo E, Kweon DH, Park K, Jin YS.
    J Microbiol Biotechnol; 2009 May 30; 19(5):482-90. PubMed ID: 19494696
    [Abstract] [Full Text] [Related]

  • 15. Metabolic Engineering and Adaptive Evolution of Clostridium beijerinckii To Increase Solvent Production from Corn Stover Hydrolysate.
    Liu J, Jiang Y, Chen J, Yang J, Jiang W, Zhuang W, Ying H, Yang S.
    J Agric Food Chem; 2020 Jul 29; 68(30):7916-7925. PubMed ID: 32614183
    [Abstract] [Full Text] [Related]

  • 16. Interactions between Bacillus cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in coculture for butanol production under nonanaerobic conditions.
    Mai S, Wang G, Wu P, Gu C, Liu H, Zhang J, Wang G.
    Biotechnol Appl Biochem; 2017 Sep 29; 64(5):719-726. PubMed ID: 27306691
    [Abstract] [Full Text] [Related]

  • 17. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans.
    Wen Z, Wu M, Lin Y, Yang L, Lin J, Cen P.
    Microb Cell Fact; 2014 Jul 15; 13(1):92. PubMed ID: 25023325
    [Abstract] [Full Text] [Related]

  • 18. Evidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101.
    Lee J, Mitchell WJ, Tangney M, Blaschek HP.
    Appl Environ Microbiol; 2005 Jun 15; 71(6):3384-7. PubMed ID: 15933048
    [Abstract] [Full Text] [Related]

  • 19. Enhanced phenolic compounds tolerance response of Clostridium beijerinckii NCIMB 8052 by inactivation of Cbei_3304.
    Liu J, Lin Q, Chai X, Luo Y, Guo T.
    Microb Cell Fact; 2018 Mar 03; 17(1):35. PubMed ID: 29501062
    [Abstract] [Full Text] [Related]

  • 20. Acetone, butanol, and ethanol production from cane molasses using Clostridium beijerinckii mutant obtained by combined low-energy ion beam implantation and N-methyl-N-nitro-N-nitrosoguanidine induction.
    Li HG, Luo W, Gu QY, Wang Q, Hu WJ, Yu XB.
    Bioresour Technol; 2013 Jun 03; 137():254-60. PubMed ID: 23587827
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.