These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


620 related items for PubMed ID: 27461193

  • 21. Joint clustering of protein interaction networks through Markov random walk.
    Wang Y, Qian X.
    BMC Syst Biol; 2014; 8 Suppl 1(Suppl 1):S9. PubMed ID: 24565376
    [Abstract] [Full Text] [Related]

  • 22. Identification of human protein complexes from local sub-graphs of protein-protein interaction network based on random forest with topological structure features.
    Li ZC, Lai YH, Chen LL, Zhou X, Dai Z, Zou XY.
    Anal Chim Acta; 2012 Mar 09; 718():32-41. PubMed ID: 22305895
    [Abstract] [Full Text] [Related]

  • 23. Construction of dynamic probabilistic protein interaction networks for protein complex identification.
    Zhang Y, Lin H, Yang Z, Wang J.
    BMC Bioinformatics; 2016 Apr 27; 17(1):186. PubMed ID: 27117946
    [Abstract] [Full Text] [Related]

  • 24. Protein complex identification by integrating protein-protein interaction evidence from multiple sources.
    Xu B, Lin H, Chen Y, Yang Z, Liu H.
    PLoS One; 2013 Apr 27; 8(12):e83841. PubMed ID: 24386289
    [Abstract] [Full Text] [Related]

  • 25. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M, Li W, Wu FX, Pan Y, Wang J.
    J Theor Biol; 2018 Jun 14; 447():65-73. PubMed ID: 29571709
    [Abstract] [Full Text] [Related]

  • 26. DPCMNE: Detecting Protein Complexes From Protein-Protein Interaction Networks Via Multi-Level Network Embedding.
    Meng X, Xiang J, Zheng R, Wu FX, Li M.
    IEEE/ACM Trans Comput Biol Bioinform; 2022 Jun 14; 19(3):1592-1602. PubMed ID: 33417563
    [Abstract] [Full Text] [Related]

  • 27. Detecting Essential Proteins Based on Network Topology, Gene Expression Data, and Gene Ontology Information.
    Zhang W, Xu J, Li Y, Zou X.
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Jun 14; 15(1):109-116. PubMed ID: 28650821
    [Abstract] [Full Text] [Related]

  • 28. Identifying protein complexes and functional modules--from static PPI networks to dynamic PPI networks.
    Chen B, Fan W, Liu J, Wu FX.
    Brief Bioinform; 2014 Mar 14; 15(2):177-94. PubMed ID: 23780996
    [Abstract] [Full Text] [Related]

  • 29. A density-based clustering approach for identifying overlapping protein complexes with functional preferences.
    Hu L, Chan KC.
    BMC Bioinformatics; 2015 May 27; 16():174. PubMed ID: 26013799
    [Abstract] [Full Text] [Related]

  • 30. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N, Yoon BJ.
    BMC Bioinformatics; 2016 Oct 06; 17(Suppl 13):351. PubMed ID: 27766944
    [Abstract] [Full Text] [Related]

  • 31. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.
    Cao B, Luo J, Liang C, Wang S, Song D.
    Comput Biol Chem; 2015 Oct 06; 58():173-81. PubMed ID: 26298638
    [Abstract] [Full Text] [Related]

  • 32. Finding low-conductance sets with dense interactions (FLCD) for better protein complex prediction.
    Wang Y, Qian X.
    BMC Syst Biol; 2017 Mar 14; 11(Suppl 3):22. PubMed ID: 28361714
    [Abstract] [Full Text] [Related]

  • 33. DualAligner: a dual alignment-based strategy to align protein interaction networks.
    Seah BS, Bhowmick SS, Dewey CF.
    Bioinformatics; 2014 Sep 15; 30(18):2619-26. PubMed ID: 24872427
    [Abstract] [Full Text] [Related]

  • 34. Identifying conserved protein complexes between species by constructing interolog networks.
    Nguyen PV, Srihari S, Leong HW.
    BMC Bioinformatics; 2013 Sep 15; 14 Suppl 16(Suppl 16):S8. PubMed ID: 24564762
    [Abstract] [Full Text] [Related]

  • 35. HKC: an algorithm to predict protein complexes in protein-protein interaction networks.
    Wang X, Wang Z, Ye J.
    J Biomed Biotechnol; 2011 Sep 15; 2011():480294. PubMed ID: 22174556
    [Abstract] [Full Text] [Related]

  • 36. PCE-FR: A Novel Method for Identifying Overlapping Protein Complexes in Weighted Protein-Protein Interaction Networks Using Pseudo-Clique Extension Based on Fuzzy Relation.
    Cao B, Luo J, Liang C, Wang S, Ding P.
    IEEE Trans Nanobioscience; 2016 Oct 15; 15(7):728-738. PubMed ID: 27662678
    [Abstract] [Full Text] [Related]

  • 37. A Novel Computational Approach for Global Alignment for Multiple Biological Networks.
    Djeddi WE, Yahia SB, Nguifo EM.
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Oct 15; 15(6):2060-2066. PubMed ID: 29994444
    [Abstract] [Full Text] [Related]

  • 38. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.
    Mehranfar A, Ghadiri N, Kouhsar M, Golshani A.
    Comput Biol Med; 2017 Sep 01; 88():18-31. PubMed ID: 28672176
    [Abstract] [Full Text] [Related]

  • 39. Prediction of problematic complexes from PPI networks: sparse, embedded, and small complexes.
    Yong CH, Wong L.
    Biol Direct; 2015 Aug 01; 10():40. PubMed ID: 26231465
    [Abstract] [Full Text] [Related]

  • 40. Protein complex detection based on flower pollination mechanism in multi-relation reconstructed dynamic protein networks.
    Lei X, Fang M, Guo L, Wu FX.
    BMC Bioinformatics; 2019 Mar 29; 20(Suppl 3):131. PubMed ID: 30925866
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 31.