These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
381 related items for PubMed ID: 27466227
1. Maternal Gametophyte Effects on Seed Development in Maize. Chettoor AM, Phillips AR, Coker CT, Dilkes B, Evans MM. Genetics; 2016 Sep; 204(1):233-48. PubMed ID: 27466227 [Abstract] [Full Text] [Related]
2. Maternal regulation of seed growth and patterning in flowering plants. Phillips AR, Evans MMS. Curr Top Dev Biol; 2020 Sep; 140():257-282. PubMed ID: 32591076 [Abstract] [Full Text] [Related]
3. Analysis of stunter1, a maize mutant with reduced gametophyte size and maternal effects on seed development. Phillips AR, Evans MM. Genetics; 2011 Apr; 187(4):1085-97. PubMed ID: 21270392 [Abstract] [Full Text] [Related]
4. Genetic analysis of female gametophyte development and function. Drews GN, Lee D, Christensen CA. Plant Cell; 1998 Jan; 10(1):5-17. PubMed ID: 9477569 [Abstract] [Full Text] [Related]
5. Antipodal cells persist through fertilization in the female gametophyte of Arabidopsis. Song X, Yuan L, Sundaresan V. Plant Reprod; 2014 Dec; 27(4):197-203. PubMed ID: 25389024 [Abstract] [Full Text] [Related]
6. Female gametophyte development and double fertilization in Balsas teosinte, Zea mays subsp. parviglumis (Poaceae). Wu CC, Diggle PK, Friedman WE. Sex Plant Reprod; 2011 Sep; 24(3):219-29. PubMed ID: 21380710 [Abstract] [Full Text] [Related]
7. The long and winding road: transport pathways for amino acids in Arabidopsis seeds. Karmann J, Müller B, Hammes UZ. Plant Reprod; 2018 Sep; 31(3):253-261. PubMed ID: 29549431 [Abstract] [Full Text] [Related]
8. Maternal gametophytic baseless1 is required for development of the central cell and early endosperm patterning in maize (Zea mays). Gutiérrez-Marcos JF, Costa LM, Evans MM. Genetics; 2006 Sep; 174(1):317-29. PubMed ID: 16849604 [Abstract] [Full Text] [Related]
9. A role for LORELEI, a putative glycosylphosphatidylinositol-anchored protein, in Arabidopsis thaliana double fertilization and early seed development. Tsukamoto T, Qin Y, Huang Y, Dunatunga D, Palanivelu R. Plant J; 2010 May 01; 62(4):571-88. PubMed ID: 20163554 [Abstract] [Full Text] [Related]
10. The female gametophyte and the endosperm control cell proliferation and differentiation of the seed coat in Arabidopsis. Ingouff M, Jullien PE, Berger F. Plant Cell; 2006 Dec 01; 18(12):3491-501. PubMed ID: 17172356 [Abstract] [Full Text] [Related]
11. A mutational approach to the study of seed development in maize. Dolfini S, Consonni G, Viotti C, Dal Prà M, Saltini G, Giulini A, Pilu R, Malgioglio A, Gavazzi G. J Exp Bot; 2007 Dec 01; 58(5):1197-205. PubMed ID: 17244631 [Abstract] [Full Text] [Related]
12. ZmEBE genes show a novel, continuous expression pattern in the central cell before fertilization and in specific domains of the resulting endosperm after fertilization. Magnard JL, Lehouque G, Massonneau A, Frangne N, Heckel T, Gutierrez-Marcos JF, Perez P, Dumas C, Rogowsky PM. Plant Mol Biol; 2003 Dec 01; 53(6):821-36. PubMed ID: 15082928 [Abstract] [Full Text] [Related]
13. Activation of CYCD7;1 in the central cell and early endosperm overcomes cell-cycle arrest in the Arabidopsis female gametophyte, and promotes early endosperm and embryo development. Sornay E, Forzani C, Forero-Vargas M, Dewitte W, Murray JA. Plant J; 2015 Oct 01; 84(1):41-55. PubMed ID: 26261067 [Abstract] [Full Text] [Related]
14. Arabidopsis LORELEI, a Maternally Expressed Imprinted Gene, Promotes Early Seed Development. Wang Y, Tsukamoto T, Noble JA, Liu X, Mosher RA, Palanivelu R. Plant Physiol; 2017 Oct 01; 175(2):758-773. PubMed ID: 28811333 [Abstract] [Full Text] [Related]
15. ZmZHOUPI, an endosperm-specific basic helix-loop-helix transcription factor involved in maize seed development. Grimault A, Gendrot G, Chamot S, Widiez T, Rabillé H, Gérentes MF, Creff A, Thévenin J, Dubreucq B, Ingram GC, Rogowsky PM, Depège-Fargeix N. Plant J; 2015 Nov 01; 84(3):574-86. PubMed ID: 26361885 [Abstract] [Full Text] [Related]
16. Development and function of central cell in angiosperm female gametophyte. Liu Y, Yan Z, Chen N, Di X, Huang J, Guo G. Genesis; 2010 Aug 01; 48(8):466-78. PubMed ID: 20506265 [Abstract] [Full Text] [Related]
17. Genetic analysis as a tool to investigate the molecular mechanisms underlying seed development in maize. Consonni G, Gavazzi G, Dolfini S. Ann Bot; 2005 Sep 01; 96(3):353-62. PubMed ID: 15998629 [Abstract] [Full Text] [Related]
18. High temporal-resolution transcriptome landscapes of maize embryo sac and ovule during early seed development. Li X, Wu J, Yi F, Lai J, Chen J. Plant Mol Biol; 2023 Feb 01; 111(3):233-248. PubMed ID: 36508138 [Abstract] [Full Text] [Related]
19. Kin conflict in seed development: an interdependent but fractious collective. Haig D. Annu Rev Cell Dev Biol; 2013 Feb 01; 29():189-211. PubMed ID: 23641801 [Abstract] [Full Text] [Related]
20. Transcriptional and hormonal signaling control of Arabidopsis seed development. Sun X, Shantharaj D, Kang X, Ni M. Curr Opin Plant Biol; 2010 Oct 01; 13(5):611-20. PubMed ID: 20875768 [Abstract] [Full Text] [Related] Page: [Next] [New Search]