These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
185 related items for PubMed ID: 27474664
41. Antimicrobial, mechanical, and barrier properties of cassava starch-chitosan films incorporated with oregano essential oil. Pelissari FM, Grossmann MV, Yamashita F, Pineda EA. J Agric Food Chem; 2009 Aug 26; 57(16):7499-504. PubMed ID: 19627142 [Abstract] [Full Text] [Related]
42. Comparison of physicochemical and mechanical properties of edible films made from navy bean and corn starches. Zhang Y, Li Y. J Sci Food Agric; 2021 Mar 15; 101(4):1538-1545. PubMed ID: 32869322 [Abstract] [Full Text] [Related]
43. Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties. Edhirej A, Sapuan SM, Jawaid M, Zahari NI. Int J Biol Macromol; 2017 Aug 15; 101():75-83. PubMed ID: 28288881 [Abstract] [Full Text] [Related]
44. Impact of steam-heat-moisture treatment on structural and functional properties of cassava flour and starch. Dudu OE, Oyedeji AB, Oyeyinka SA, Ma Y. Int J Biol Macromol; 2019 Apr 01; 126():1056-1064. PubMed ID: 30593809 [Abstract] [Full Text] [Related]
45. Anti-plasticization of cassava starch by complexing fatty acids. Luk E, Sandoval AJ, Cova A, Müller AJ. Carbohydr Polym; 2013 Oct 15; 98(1):659-64. PubMed ID: 23987396 [Abstract] [Full Text] [Related]
46. Effect of protein and glycerol concentration on the mechanical, optical, and water vapor barrier properties of canola protein isolate-based edible films. Chang C, Nickerson MT. Food Sci Technol Int; 2015 Jan 15; 21(1):33-44. PubMed ID: 24072788 [Abstract] [Full Text] [Related]
48. Microstructure and characteristics of high-amylose corn starch-chitosan film as affected by composition. Feng Q, Hu F, Qiu L. Food Sci Technol Int; 2013 Jun 15; 19(3):279-87. PubMed ID: 23493788 [Abstract] [Full Text] [Related]
49. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films. Biduski B, Silva FTD, Silva WMD, Halal SLME, Pinto VZ, Dias ARG, Zavareze EDR. Food Chem; 2017 Jan 01; 214():53-60. PubMed ID: 27507447 [Abstract] [Full Text] [Related]
50. Relationships among the composition and physicochemical properties of starches with the characteristics of their films. Mali S, Karam LB, Ramos LP, Grossmann MV. J Agric Food Chem; 2004 Dec 15; 52(25):7720-5. PubMed ID: 15675825 [Abstract] [Full Text] [Related]
51. Effect of natamycin, nisin and glycerol on the physicochemical properties, roughness and hydrophobicity of tapioca starch edible films. Ollé Resa CP, Jagus RJ, Gerschenson LN. Mater Sci Eng C Mater Biol Appl; 2014 Jul 01; 40():281-7. PubMed ID: 24857495 [Abstract] [Full Text] [Related]
52. Degradation behavior of biocomposites based on cassava starch buried under indoor soil conditions. Maran JP, Sivakumar V, Thirugnanasambandham K, Sridhar R. Carbohydr Polym; 2014 Jan 30; 101():20-8. PubMed ID: 24299744 [Abstract] [Full Text] [Related]
55. Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis. Costa SS, Druzian JI, Machado BA, de Souza CO, Guimarães AG. PLoS One; 2014 Jan 30; 9(11):e112554. PubMed ID: 25383783 [Abstract] [Full Text] [Related]