These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


279 related items for PubMed ID: 27474672

  • 1. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans.
    Chen YW, Lee HV, Juan JC, Phang SM.
    Carbohydr Polym; 2016 Oct 20; 151():1210-1219. PubMed ID: 27474672
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites.
    El Achaby M, Kassab Z, Aboulkas A, Gaillard C, Barakat A.
    Int J Biol Macromol; 2018 Jan 20; 106():681-691. PubMed ID: 28823511
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano.
    Karimi S, Tahir PM, Karimi A, Dufresne A, Abdulkhani A.
    Carbohydr Polym; 2014 Jan 30; 101():878-85. PubMed ID: 24299851
    [Abstract] [Full Text] [Related]

  • 9. Cellulose nanocrystals derived from Enteromorpha prolifera and their use in developing bionanocomposite films with water-soluble polysaccharides extracted from E. prolifera.
    Kazharska M, Ding Y, Arif M, Jiang F, Cong Y, Wang H, Zhao C, Liu X, Chi Z, Liu C.
    Int J Biol Macromol; 2019 Aug 01; 134():390-396. PubMed ID: 31078599
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective.
    Chen YW, Lee HV.
    Int J Biol Macromol; 2018 Feb 01; 107(Pt A):78-92. PubMed ID: 28860064
    [Abstract] [Full Text] [Related]

  • 14. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization.
    Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J, Liu Y.
    Carbohydr Polym; 2012 Nov 06; 90(4):1609-13. PubMed ID: 22944423
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment.
    Syafri E, Jamaluddin, Sari NH, Mahardika M, Amanda P, Ilyas RA.
    Int J Biol Macromol; 2022 Mar 01; 200():25-33. PubMed ID: 34971644
    [Abstract] [Full Text] [Related]

  • 19. Synthesis and characterization of cotton fiber-based nanocellulose.
    Theivasanthi T, Anne Christma FL, Toyin AJ, Gopinath SCB, Ravichandran R.
    Int J Biol Macromol; 2018 Apr 01; 109():832-836. PubMed ID: 29133091
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.