These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
284 related items for PubMed ID: 27474714
1. Effects of Glucose and Starch on Lactate Production by Newly Isolated Streptococcus bovis S1 from Saanen Goats. Chen L, Luo Y, Wang H, Liu S, Shen Y, Wang M. Appl Environ Microbiol; 2016 Oct 01; 82(19):5982-9. PubMed ID: 27474714 [Abstract] [Full Text] [Related]
2. Relative significances of pH and substrate starch level to roles of Streptococcus bovis S1 in rumen acidosis. Chen L, Liu S, Wang H, Wang M, Yu L. AMB Express; 2016 Dec 01; 6(1):80. PubMed ID: 27655587 [Abstract] [Full Text] [Related]
3. Regulation of CcpA on the growth and organic acid production characteristics of ruminal Streptococcus bovis at different pH. Jin Y, Wang C, Fan Y, Elmhadi M, Zhang Y, Wang H. BMC Microbiol; 2021 Dec 15; 21(1):344. PubMed ID: 34911440 [Abstract] [Full Text] [Related]
4. Molecular characterization of CcpA and involvement of this protein in transcriptional regulation of lactate dehydrogenase and pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis. Asanuma N, Yoshii T, Hino T. Appl Environ Microbiol; 2004 Sep 15; 70(9):5244-51. PubMed ID: 15345406 [Abstract] [Full Text] [Related]
6. Transcriptome Analysis Reveals Catabolite Control Protein A Regulatory Mechanisms Underlying Glucose-Excess or -Limited Conditions in a Ruminal Bacterium, Streptococcus bovis. Jin Y, Fan Y, Sun H, Zhang Y, Wang H. Front Microbiol; 2021 Sep 15; 12():767769. PubMed ID: 34867900 [Abstract] [Full Text] [Related]
7. Transcriptional control of carbohydrate catabolism by the CcpA protein in the ruminal bacterium Streptococcus bovis. Zhao X, Zhang Y, He B, Han Y, Shen B, Zang Y, Wang H. Appl Environ Microbiol; 2023 Oct 31; 89(10):e0047423. PubMed ID: 37823652 [Abstract] [Full Text] [Related]
8. Effects of the overexpression of fructose-1,6-bisphosphate aldolase on fermentation pattern and transcription of the genes encoding lactate dehydrogenase and pyruvate formate-lyase in a ruminal bacterium, Streptococcus bovis. Asanuma N, Yoshii T, Kikuchi M, Hino T. J Gen Appl Microbiol; 2004 Apr 31; 50(2):71-8. PubMed ID: 15248145 [Abstract] [Full Text] [Related]
9. Protozoa involved in butyric rather than lactic fermentative pattern during latent acidosis in sheep. Brossard L, Martin C, Chaucheyras-Durand F, Michalet-Doreau B. Reprod Nutr Dev; 2004 Apr 31; 44(3):195-206. PubMed ID: 15460159 [Abstract] [Full Text] [Related]
10. Effects of a strain of Saccharomyces cerevisiae (Levucell SC1), a microbial additive for ruminants, on lactate metabolism in vitro. Chaucheyras F, Fonty G, Bertin G, Salmon JM, Gouet P. Can J Microbiol; 1996 Sep 31; 42(9):927-33. PubMed ID: 8864215 [Abstract] [Full Text] [Related]
11. Molecular characteristics and transcription of the gene encoding a multifunctional alcohol dehydrogenase in relation to the deactivation of pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis. Asanuma N, Yoshii T, Hino T. Arch Microbiol; 2004 Feb 31; 181(2):122-8. PubMed ID: 14676990 [Abstract] [Full Text] [Related]
12. Characterization of Streptococcus bovis from the rumen of the dromedary camel and Rusa deer. Ghali MB, Scott PT, Al Jassim RA. Lett Appl Microbiol; 2004 Feb 31; 39(4):341-6. PubMed ID: 15355536 [Abstract] [Full Text] [Related]
13. Molecular characterization and expression of pyruvate formate-lyase-activating enzyme in a ruminal bacterium, Streptococcus bovis. Asanuma N, Hino T. Appl Environ Microbiol; 2002 Jul 31; 68(7):3352-7. PubMed ID: 12089014 [Abstract] [Full Text] [Related]
15. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain. Okano K, Zhang Q, Shinkawa S, Yoshida S, Tanaka T, Fukuda H, Kondo A. Appl Environ Microbiol; 2009 Jan 31; 75(2):462-7. PubMed ID: 19011066 [Abstract] [Full Text] [Related]
16. Effects of dietary changes and yeast culture (Saccharomyces cerevisiae) on rumen microbial fermentation of Holstein heifers. Moya D, Calsamiglia S, Ferret A, Blanch M, Fandiño JI, Castillejos L, Yoon I. J Anim Sci; 2009 Sep 31; 87(9):2874-81. PubMed ID: 19542509 [Abstract] [Full Text] [Related]
17. Potential influence of dairy propionibacteria on the growth and acid metabolism of Streptococcus bovis and Megasphaera elsdenii. Luo J, Ranadheera CS, King S, Evans CA, Baines SK. Benef Microbes; 2017 Feb 07; 8(1):111-119. PubMed ID: 27824275 [Abstract] [Full Text] [Related]
18. Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition. Chiquette J, Allison MJ, Rasmussen MA. J Dairy Sci; 2008 Sep 07; 91(9):3536-43. PubMed ID: 18765612 [Abstract] [Full Text] [Related]
19. Presence of NAD+-specific glyceraldehyde-3-phosphate dehydrogenase and CcpA-dependent transcription of its gene in the ruminal bacterium Streptococcus bovis. Asanuma N, Hino T. FEMS Microbiol Lett; 2006 Apr 07; 257(1):17-23. PubMed ID: 16553827 [Abstract] [Full Text] [Related]
20. Engineering Lactococcus lactis for D-Lactic Acid Production from Starch. Aso Y, Hashimoto A, Ohara H. Curr Microbiol; 2019 Oct 07; 76(10):1186-1192. PubMed ID: 31302724 [Abstract] [Full Text] [Related] Page: [Next] [New Search]