These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. "Bottom-up" Construction of Multi-Polyprodrug-Arm Hyperbranched Amphiphiles for Cancer Therapy. Sun P, Chen D, Deng H, Wang N, Huang P, Jin X, Zhu X. Bioconjug Chem; 2017 May 17; 28(5):1470-1480. PubMed ID: 28441015 [Abstract] [Full Text] [Related]
4. SN-38 loading capacity of hydrophobic polymer blend nanoparticles: formulation, optimization and efficacy evaluation. Dimchevska S, Geskovski N, Petruševski G, Chacorovska M, Popeski-Dimovski R, Ugarkovic S, Goracinova K. Drug Dev Ind Pharm; 2017 Mar 17; 43(3):502-510. PubMed ID: 27910713 [Abstract] [Full Text] [Related]
5. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells. Kashyap S, Singh N, Surnar B, Jayakannan M. Biomacromolecules; 2016 Jan 11; 17(1):384-98. PubMed ID: 26652038 [Abstract] [Full Text] [Related]
6. Evaluation of the cytotoxic effect of camptothecin solid lipid nanoparticles on MCF7 cells. Acevedo-Morantes CY, Acevedo-Morantes MT, Suleiman-Rosado D, Ramírez-Vick JE. Drug Deliv; 2013 Nov 11; 20(8):338-48. PubMed ID: 24024505 [Abstract] [Full Text] [Related]
7. Development and evaluation of camptothecin loaded polymer stabilized nanoemulsion: Targeting potential in 4T1-breast tumour xenograft model. Sugumaran A, Ponnusamy C, Kandasamy P, Krishnaswami V, Palanichamy R, Kandasamy R, Lakshmanan M, Natesan S. Eur J Pharm Sci; 2018 Apr 30; 116():15-25. PubMed ID: 28987538 [Abstract] [Full Text] [Related]
8. Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery. Cirpanli Y, Bilensoy E, Lale Doğan A, Caliş S. Eur J Pharm Biopharm; 2009 Sep 30; 73(1):82-9. PubMed ID: 19442723 [Abstract] [Full Text] [Related]
9. Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. Hu X, Hu J, Tian J, Ge Z, Zhang G, Luo K, Liu S. J Am Chem Soc; 2013 Nov 20; 135(46):17617-29. PubMed ID: 24160840 [Abstract] [Full Text] [Related]
10. Cisplatin-Stitched Polysaccharide Vesicles for Synergistic Cancer Therapy of Triple Antagonistic Drugs. Deshpande NU, Jayakannan M. Biomacromolecules; 2017 Jan 09; 18(1):113-126. PubMed ID: 28064505 [Abstract] [Full Text] [Related]
11. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Zhao J, Wang H, Liu J, Deng L, Liu J, Dong A, Zhang J. Biomacromolecules; 2013 Nov 11; 14(11):3973-84. PubMed ID: 24107101 [Abstract] [Full Text] [Related]
12. Fabrication of Reductive-Responsive Prodrug Nanoparticles with Superior Structural Stability by Polymerization-Induced Self-Assembly and Functional Nanoscopic Platform for Drug Delivery. Zhang WJ, Hong CY, Pan CY. Biomacromolecules; 2016 Sep 12; 17(9):2992-9. PubMed ID: 27548375 [Abstract] [Full Text] [Related]
13. Antitumoral activity of camptothecin-loaded nanoparticles in 9L rat glioma model. Cırpanlı Y, Allard E, Passirani C, Bilensoy E, Lemaire L, Calış S, Benoit JP. Int J Pharm; 2011 Jan 17; 403(1-2):201-6. PubMed ID: 20951783 [Abstract] [Full Text] [Related]
14. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. Min KH, Park K, Kim YS, Bae SM, Lee S, Jo HG, Park RW, Kim IS, Jeong SY, Kim K, Kwon IC. J Control Release; 2008 May 08; 127(3):208-18. PubMed ID: 18336946 [Abstract] [Full Text] [Related]
15. Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti-cancer drugs. Gu J, Su S, Li Y, He Q, Shi J. Chem Commun (Camb); 2011 Feb 21; 47(7):2101-3. PubMed ID: 21183990 [Abstract] [Full Text] [Related]
16. Reduction stimuli-responsive unimolecular polymeric prodrug based on amphiphilic dextran-framework for antitumor drug delivery. Bai S, Gao YE, Ma X, Shi X, Hou M, Xue P, Kang Y, Xu Z. Carbohydr Polym; 2018 Feb 15; 182():235-244. PubMed ID: 29279120 [Abstract] [Full Text] [Related]
17. Loading studies of the anticancer drug camptothecin into dual stimuli-sensitive nanoparticles. Stability scrutiny. Iglesias N, Galbis E, Díaz-Blanco MJ, de-Paz MV, Galbis JA. Int J Pharm; 2018 Oct 25; 550(1-2):429-438. PubMed ID: 30196142 [Abstract] [Full Text] [Related]
18. CPT loaded nanoparticles based on beta-cyclodextrin-grafted poly(ethylene glycol)/poly (L-glutamic acid) diblock copolymer and their inclusion complexes with CPT. Du F, Meng H, Xu K, Xu Y, Luo P, Luo Y, Lu W, Huang J, Liu S, Yu J. Colloids Surf B Biointerfaces; 2014 Jan 01; 113():230-6. PubMed ID: 24096159 [Abstract] [Full Text] [Related]
19. Targeted nanoparticles assembled via complexation of boronic-acid-containing targeting moieties to diol-containing polymers. Han H, Davis ME. Bioconjug Chem; 2013 Apr 17; 24(4):669-77. PubMed ID: 23461746 [Abstract] [Full Text] [Related]
20. Poly(N-vinyl caprolactam) grown on nanographene oxide as an effective nanocargo for drug delivery. Kavitha T, Kang IK, Park SY. Colloids Surf B Biointerfaces; 2014 Mar 01; 115():37-45. PubMed ID: 24316754 [Abstract] [Full Text] [Related] Page: [Next] [New Search]