These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
222 related items for PubMed ID: 27477937
1. Hypoxia Promotes Osteogenesis of Human Placental-Derived Mesenchymal Stem Cells. Gu Q, Gu Y, Shi Q, Yang H. Tohoku J Exp Med; 2016 Aug; 239(4):287-96. PubMed ID: 27477937 [Abstract] [Full Text] [Related]
2. Prolonged exposure to hypoxic milieu improves the osteogenic potential of adipose derived stem cells. Fotia C, Massa A, Boriani F, Baldini N, Granchi D. J Cell Biochem; 2015 Jul; 116(7):1442-53. PubMed ID: 25648991 [Abstract] [Full Text] [Related]
3. Human Placenta-Derived CD146-Positive Mesenchymal Stromal Cells Display a Distinct Osteogenic Differentiation Potential. Ulrich C, Abruzzese T, Maerz JK, Ruh M, Amend B, Benz K, Rolauffs B, Abele H, Hart ML, Aicher WK. Stem Cells Dev; 2015 Jul 01; 24(13):1558-69. PubMed ID: 25743703 [Abstract] [Full Text] [Related]
4. Role of the ERK1/2 Signaling Pathway in Osteogenesis of Rat Tendon-Derived Stem Cells in Normoxic and Hypoxic Cultures. Li P, Xu Y, Gan Y, Song L, Zhang C, Wang L, Zhou Q. Int J Med Sci; 2016 Jul 01; 13(8):629-37. PubMed ID: 27499695 [Abstract] [Full Text] [Related]
5. Bortezomib enhances the osteogenic differentiation capacity of human mesenchymal stromal cells derived from bone marrow and placental tissues. Sanvoranart T, Supokawej A, Kheolamai P, U-Pratya Y, Klincumhom N, Manochantr S, Wattanapanitch M, Issaragrisil S. Biochem Biophys Res Commun; 2014 May 16; 447(4):580-5. PubMed ID: 24747566 [Abstract] [Full Text] [Related]
6. Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Kisiel AH, McDuffee LA, Masaoud E, Bailey TR, Esparza Gonzalez BP, Nino-Fong R. Am J Vet Res; 2012 Aug 16; 73(8):1305-17. PubMed ID: 22849692 [Abstract] [Full Text] [Related]
7. Continuous hypoxia regulates the osteogenic potential of mesenchymal stem cells in a time-dependent manner. Ding H, Chen S, Yin JH, Xie XT, Zhu ZH, Gao YS, Zhang CQ. Mol Med Rep; 2014 Oct 16; 10(4):2184-90. PubMed ID: 25109357 [Abstract] [Full Text] [Related]
8. Hypoxia Suppresses Spontaneous Mineralization and Osteogenic Differentiation of Mesenchymal Stem Cells via IGFBP3 Up-Regulation. Kim JH, Yoon SM, Song SU, Park SG, Kim WS, Park IG, Lee J, Sung JH. Int J Mol Sci; 2016 Aug 24; 17(9):. PubMed ID: 27563882 [Abstract] [Full Text] [Related]
9. Effects of hypoxia on differentiation from human placenta-derived mesenchymal stem cells to nucleus pulposus-like cells. Ni L, Liu X, Sochacki KR, Ebraheim M, Fahrenkopf M, Shi Q, Liu J, Yang H. Spine J; 2014 Oct 01; 14(10):2451-8. PubMed ID: 24662208 [Abstract] [Full Text] [Related]
10. Increased SCF/c-kit by hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells via regulating the phosphorylation of mTOR. Lee Y, Jung J, Cho KJ, Lee SK, Park JW, Oh IH, Kim GJ. J Cell Biochem; 2013 Jan 01; 114(1):79-88. PubMed ID: 22833529 [Abstract] [Full Text] [Related]
11. Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells. Hung SP, Ho JH, Shih YR, Lo T, Lee OK. J Orthop Res; 2012 Feb 01; 30(2):260-6. PubMed ID: 21809383 [Abstract] [Full Text] [Related]
13. Hypoxic conditioned medium of placenta-derived mesenchymal stem cells protects against scar formation. Du L, Lv R, Yang X, Cheng S, Ma T, Xu J. Life Sci; 2016 Mar 15; 149():51-7. PubMed ID: 26892145 [Abstract] [Full Text] [Related]
14. Improved osteogenesis and upregulated immunogenicity in human placenta-derived mesenchymal stem cells primed with osteogenic induction medium. Fu X, Yang H, Zhang H, Wang G, Liu K, Gu Q, Tao Y, Chen G, Jiang X, Li G, Gu Y, Shi Q. Stem Cell Res Ther; 2016 Sep 20; 7(1):138. PubMed ID: 27649692 [Abstract] [Full Text] [Related]
15. Effects of hypoxia on osteogenic differentiation of mesenchymal stromal cells used as a cell therapy for avascular necrosis of the femoral head. Ciapetti G, Granchi D, Fotia C, Savarino L, Dallari D, Del Piccolo N, Donati DM, Baldini N. Cytotherapy; 2016 Sep 20; 18(9):1087-99. PubMed ID: 27421741 [Abstract] [Full Text] [Related]
16. Electromagnetic fields and nanomagnetic particles increase the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Kim MO, Jung H, Kim SC, Park JK, Seo YK. Int J Mol Med; 2015 Jan 20; 35(1):153-60. PubMed ID: 25352086 [Abstract] [Full Text] [Related]
17. Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. Merceron C, Vinatier C, Portron S, Masson M, Amiaud J, Guigand L, Chérel Y, Weiss P, Guicheux J. Am J Physiol Cell Physiol; 2010 Feb 20; 298(2):C355-64. PubMed ID: 19940068 [Abstract] [Full Text] [Related]
18. Human amnion-derived mesenchymal stem cells promote osteogenic and angiogenic differentiation of human adipose-derived stem cells. Zhang C, Yu L, Liu S, Wang Y. PLoS One; 2017 Feb 20; 12(10):e0186253. PubMed ID: 29020045 [Abstract] [Full Text] [Related]
19. Mesenchymal Stem Cells Repress Osteoblast Differentiation Under Osteogenic-Inducing Conditions. Santos TS, Abuna RP, Castro Raucci LM, Teixeira LN, de Oliveira PT, Beloti MM, Rosa AL. J Cell Biochem; 2015 Dec 20; 116(12):2896-902. PubMed ID: 26013001 [Abstract] [Full Text] [Related]