These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
810 related items for PubMed ID: 27483303
61. Repeated Moderate Sound Exposure Causes Accumulated Trauma to Cochlear Ribbon Synapses in Mice. Luo Y, Qu T, Song Q, Qi Y, Yu S, Gong S, Liu K, Jiang X. Neuroscience; 2020 Mar 01; 429():173-184. PubMed ID: 31935490 [Abstract] [Full Text] [Related]
64. Potentiation of noise-induced hearing loss by low concentrations of hydrogen cyanide in rats. Fechter LD, Chen GD, Johnson DL. Toxicol Sci; 2002 Mar 01; 66(1):131-8. PubMed ID: 11861980 [Abstract] [Full Text] [Related]
66. Hydrogen-rich saline alleviates experimental noise-induced hearing loss in guinea pigs. Zhou Y, Zheng H, Ruan F, Chen X, Zheng G, Kang M, Zhang Q, Sun X. Neuroscience; 2012 May 03; 209():47-53. PubMed ID: 22387110 [Abstract] [Full Text] [Related]
70. Loss of inner hair cell ribbon synapses and auditory nerve fiber regression in Cldn14 knockout mice. Claußen M, Schulze J, Nothwang HG. Hear Res; 2020 Jun 03; 391():107950. PubMed ID: 32251970 [Abstract] [Full Text] [Related]
71. [Ototoxicity of kanamycin sulfate in adult rats and its underlying mechanisms]. Zhang ZC, Yu HM, Liu Q, Tian J, Wang TF, Lai CJ, Zhou XY. Sheng Li Xue Bao; 2011 Apr 25; 63(2):171-6. PubMed ID: 21505733 [Abstract] [Full Text] [Related]
72. Synaptic ribbon dynamics after noise exposure in the hearing cochlea. Ismail Mohamad N, Santra P, Park Y, Matthews IR, Taketa E, Chan DK. Commun Biol; 2024 Apr 06; 7(1):421. PubMed ID: 38582813 [Abstract] [Full Text] [Related]
73. Nicotinamide riboside protects noise-induced hearing loss by recovering the hair cell ribbon synapses. Han S, Du Z, Liu K, Gong S. Neurosci Lett; 2020 Apr 23; 725():134910. PubMed ID: 32171805 [Abstract] [Full Text] [Related]
74. Changes in Guinea pig cochlear hair cells after sound conditioning and noise exposure. Zuo H, Cui B, She X, Wu M. J Occup Health; 2008 Apr 23; 50(5):373-9. PubMed ID: 18654041 [Abstract] [Full Text] [Related]
75. Cochlear morphology in relation to loss of behavioural, electrophysiological, and middle ear reflex thresholds after exposure to noise. Engström B, Borg E. Acta Otolaryngol Suppl; 1983 Apr 23; 402():5-23. PubMed ID: 6582763 [Abstract] [Full Text] [Related]
78. Morphological and Functional Evaluation of Ribbon Synapses at Specific Frequency Regions of the Mouse Cochlea. Yu SK, Du ZD, Song QL, Qu TF, Qi Y, Xiong W, He L, Wei W, Gong SS, Liu K. J Vis Exp; 2019 May 10; (147):. PubMed ID: 31132058 [Abstract] [Full Text] [Related]
79. Changes in audiometric threshold and frequency selectivity correlate with cochlear histopathology in macaque monkeys with permanent noise-induced hearing loss. Burton JA, Mackey CA, MacDonald KS, Hackett TA, Ramachandran R. Hear Res; 2020 Dec 10; 398():108082. PubMed ID: 33045479 [Abstract] [Full Text] [Related]
80. Morphological and molecular correlates of altered hearing sensitivity in the genetically audiogenic seizure-prone hamster GASH/Sal. Sánchez-Benito D, Hyppolito MA, Alvarez-Morujo AJ, López DE, Gómez-Nieto R. Hear Res; 2020 Jul 10; 392():107973. PubMed ID: 32402894 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]