These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
168 related items for PubMed ID: 27497830
1. Efficient azo dye decolorization in a continuous stirred tank reactor (CSTR) with built-in bioelectrochemical system. Cui MH, Cui D, Gao L, Cheng HY, Wang AJ. Bioresour Technol; 2016 Oct; 218():1307-11. PubMed ID: 27497830 [Abstract] [Full Text] [Related]
2. Improved azo dye decolorization in an advanced integrated system of bioelectrochemical module with surrounding electrode deployment and anaerobic sludge reactor. Kong F, Wang A, Ren HY. Bioresour Technol; 2015 Jan; 175():624-8. PubMed ID: 25466999 [Abstract] [Full Text] [Related]
3. Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR-BES): a design suitable for scaling-up. Cui D, Guo YQ, Lee HS, Wu WM, Liang B, Wang AJ, Cheng HY. Bioresour Technol; 2014 Jul; 163():254-61. PubMed ID: 24821204 [Abstract] [Full Text] [Related]
4. Effect of electrode position on azo dye removal in an up-flow hybrid anaerobic digestion reactor with built-in bioelectrochemical system. Cui MH, Cui D, Lee HS, Liang B, Wang AJ, Cheng HY. Sci Rep; 2016 Apr 28; 6():25223. PubMed ID: 27121278 [Abstract] [Full Text] [Related]
5. Evaluation of anaerobic sludge volume for improving azo dye decolorization in a hybrid anaerobic reactor with built-in bioelectrochemical system. Cui MH, Cui D, Gao L, Wang AJ, Cheng HY. Chemosphere; 2017 Feb 28; 169():18-22. PubMed ID: 27855327 [Abstract] [Full Text] [Related]
6. Decolorization of azo dyes under batch anaerobic and sequential anaerobic/aerobic conditions. Işik M, Sponza DT. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004 Feb 28; 39(4):1107-27. PubMed ID: 15137723 [Abstract] [Full Text] [Related]
7. Decolorization of azo dyes in bioelectrochemical systems. Mu Y, Rabaey K, Rozendal RA, Yuan Z, Keller J. Environ Sci Technol; 2009 Jul 01; 43(13):5137-43. PubMed ID: 19673319 [Abstract] [Full Text] [Related]
8. Effects of reduction products of ortho-hydroxyl substituted azo dyes on biodecolorization of azo dyes. Liu G, Wang J, Lu H, Jin R, Zhou J, Zhang L. J Hazard Mater; 2009 Nov 15; 171(1-3):222-9. PubMed ID: 19545943 [Abstract] [Full Text] [Related]
9. Improved decolorization and mineralization of azo dye in an integrated system of anaerobic bioelectrochemical modules and aerobic moving bed biofilm reactor. Kong F, Ren HY, Liu D, Wang Z, Nan J, Ren NQ, Fu Q. Bioresour Technol; 2022 Jun 15; 353():127147. PubMed ID: 35421561 [Abstract] [Full Text] [Related]
10. Optimization of working cathode position in sleeve-type bioelectrochemical system with inner chamber/outer chamber for azo dye treatment. Kong F, Wang A, Ren HY. Bioresour Technol; 2015 Dec 15; 198():437-44. PubMed ID: 26409856 [Abstract] [Full Text] [Related]
11. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor. Cui D, Guo YQ, Cheng HY, Liang B, Kong FY, Lee HS, Wang AJ. J Hazard Mater; 2012 Nov 15; 239-240():257-64. PubMed ID: 23009797 [Abstract] [Full Text] [Related]
12. Mutual effect between electrochemically active bacteria (EAB) and azo dye in bio-electrochemical system (BES). Cui D, Cui MH, Liang B, Liu WZ, Tang ZE, Wang AJ. Chemosphere; 2020 Jan 15; 239():124787. PubMed ID: 31526987 [Abstract] [Full Text] [Related]
13. Optimized matching modes of bioelectrochemical module and anaerobic sludge in the integrated system for azo dye treatment. Kong F, Wang A, Ren HY. Bioresour Technol; 2015 Sep 15; 192():486-93. PubMed ID: 26080106 [Abstract] [Full Text] [Related]
14. Improved azo dye decolorization in a modified sleeve-type bioelectrochemical system. Kong F, Wang A, Liang B, Liu W, Cheng H. Bioresour Technol; 2013 Sep 15; 143():669-73. PubMed ID: 23830473 [Abstract] [Full Text] [Related]
15. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. van der Zee FP, Bouwman RH, Strik DP, Lettinga G, Field JA. Biotechnol Bioeng; 2001 Dec 20; 75(6):691-701. PubMed ID: 11745147 [Abstract] [Full Text] [Related]
16. Aromatic amine degradation in a UASB/CSTR sequential system treating Congo Red dye. Işik M, Sponza DT. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 Dec 20; 38(10):2301-15. PubMed ID: 14524683 [Abstract] [Full Text] [Related]
17. The Comparative Study on the Rapid Decolorization of Azo, Anthraquinone and Triphenylmethane Dyes by Anaerobic Sludge. Cui D, Zhang H, He R, Zhao M. Int J Environ Res Public Health; 2016 Oct 28; 13(11):. PubMed ID: 27801853 [Abstract] [Full Text] [Related]
18. Hydrodynamics of up-flow hybrid anaerobic digestion reactors with built-in bioelectrochemical system. Cui MH, Sangeetha T, Gao L, Wang AJ. J Hazard Mater; 2020 Jan 15; 382():121046. PubMed ID: 31450205 [Abstract] [Full Text] [Related]
19. Development of an activated carbon-packed microbial bioelectrochemical system for azo dye degradation. Cardenas-Robles A, Martinez E, Rendon-Alcantar I, Frontana C, Gonzalez-Gutierrez L. Bioresour Technol; 2013 Jan 15; 127():37-43. PubMed ID: 23128299 [Abstract] [Full Text] [Related]
20. Accelerated decolorization of azo dye Congo red in a combined bioanode-biocathode bioelectrochemical system with modified electrodes deployment. Kong F, Wang A, Cheng H, Liang B. Bioresour Technol; 2014 Jan 15; 151():332-9. PubMed ID: 24262842 [Abstract] [Full Text] [Related] Page: [Next] [New Search]