These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
228 related items for PubMed ID: 27506161
1. Sauropsids Cornification is Based on Corneous Beta-Proteins, a Special Type of Keratin-Associated Corneous Proteins of the Epidermis. Alibardi L. J Exp Zool B Mol Dev Evol; 2016 Sep; 326(6):338-351. PubMed ID: 27506161 [Abstract] [Full Text] [Related]
2. Review: Evolution and diversification of corneous beta-proteins, the characteristic epidermal proteins of reptiles and birds. Holthaus KB, Eckhart L, Dalla Valle L, Alibardi L. J Exp Zool B Mol Dev Evol; 2018 Dec; 330(8):438-453. PubMed ID: 30637919 [Abstract] [Full Text] [Related]
3. The Process of Cornification Evolved From the Initial Keratinization in the Epidermis and Epidermal Derivatives of Vertebrates: A New Synthesis and the Case of Sauropsids. Alibardi L. Int Rev Cell Mol Biol; 2016 Dec; 327():263-319. PubMed ID: 27692177 [Abstract] [Full Text] [Related]
5. General aspects on skin development in vertebrates with emphasis on sauropsids epidermis. Alibardi L. Dev Biol; 2023 Sep; 501():60-73. PubMed ID: 37244375 [Abstract] [Full Text] [Related]
6. Keratinization and Cornification are not equivalent processes but keratinization in fish and amphibians evolved into cornification in terrestrial vertebrates. Alibardi L. Exp Dermatol; 2022 May; 31(5):794-799. PubMed ID: 35007368 [Abstract] [Full Text] [Related]
7. The molecular organization of the beta-sheet region in Corneous beta-proteins (beta-keratins) of sauropsids explains its stability and polymerization into filaments. Calvaresi M, Eckhart L, Alibardi L. J Struct Biol; 2016 Jun; 194(3):282-91. PubMed ID: 26965557 [Abstract] [Full Text] [Related]
8. Hard cornification in reptilian epidermis in comparison to cornification in mammalian epidermis. Alibardi L, Toni M, Dalla Valle L. Exp Dermatol; 2007 Dec; 16(12):961-76. PubMed ID: 18031455 [Abstract] [Full Text] [Related]
9. Cytochemical, biochemical and molecular aspects of the process of keratinization in the epidermis of reptilian scales. Alibardi L, Toni M. Prog Histochem Cytochem; 2006 Dec; 40(2):73-134. PubMed ID: 16584938 [Abstract] [Full Text] [Related]
10. Transition from embryonic to adult epidermis in reptiles occurs by the production of corneous beta-proteins. Alibardi L. Int J Dev Biol; 2014 Dec; 58(10-12):829-39. PubMed ID: 26154324 [Abstract] [Full Text] [Related]
11. Structural and immunocytochemical characterization of keratinization in vertebrate epidermis and epidermal derivatives. Alibardi L. Int Rev Cytol; 2006 Dec; 253():177-259. PubMed ID: 17098057 [Abstract] [Full Text] [Related]
12. Immunolocalization of epidermal differentiation complex proteins reveals distinct molecular compositions of cells that control structure and mechanical properties of avian skin appendages. Alibardi L, Eckhart L. J Morphol; 2021 Jun; 282(6):917-933. PubMed ID: 33830534 [Abstract] [Full Text] [Related]
13. Cornification in reptilian epidermis occurs through the deposition of keratin-associated beta-proteins (beta-keratins) onto a scaffold of intermediate filament keratins. Alibardi L. J Morphol; 2013 Feb; 274(2):175-93. PubMed ID: 23065677 [Abstract] [Full Text] [Related]
14. Vertebrate keratinization evolved into cornification mainly due to transglutaminase and sulfhydryl oxidase activities on epidermal proteins: An immunohistochemical survey. Alibardi L. Anat Rec (Hoboken); 2022 Feb; 305(2):333-358. PubMed ID: 34219408 [Abstract] [Full Text] [Related]
15. Structures of the ß-Keratin Filaments and Keratin Intermediate Filaments in the Epidermal Appendages of Birds and Reptiles (Sauropsids). Parry DAD. Genes (Basel); 2021 Apr 17; 12(4):. PubMed ID: 33920614 [Abstract] [Full Text] [Related]
16. Immunolabeling indicates that sulfhydryl oxidase is absent in anamniote epidermis but marks the process of cornification in the skin of terrestrial vertebrates. Alibardi L. J Morphol; 2021 Feb 17; 282(2):247-261. PubMed ID: 33196118 [Abstract] [Full Text] [Related]
17. Hard (Beta-)keratins in the epidermis of reptiles: composition, sequence, and molecular organization. Toni M, Dalla Valle L, Alibardi L. J Proteome Res; 2007 Sep 17; 6(9):3377-92. PubMed ID: 17705524 [Abstract] [Full Text] [Related]
18. Adaptation to the land: The skin of reptiles in comparison to that of amphibians and endotherm amniotes. Alibardi L. J Exp Zool B Mol Dev Evol; 2003 Aug 15; 298(1):12-41. PubMed ID: 12949767 [Abstract] [Full Text] [Related]
19. Evolutionary origin and diversification of epidermal barrier proteins in amniotes. Strasser B, Mlitz V, Hermann M, Rice RH, Eigenheer RA, Alibardi L, Tschachler E, Eckhart L. Mol Biol Evol; 2014 Dec 15; 31(12):3194-205. PubMed ID: 25169930 [Abstract] [Full Text] [Related]