These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


139 related items for PubMed ID: 27511166

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Correlating the Genetic and Physical Map of Barley Chromosome 3H Revealed Limitations of the FISH-Based Mapping of Nearby Single-Copy Probes Caused by the Dynamic Structure of Metaphase Chromosomes.
    Bustamante FO, Aliyeva-Schnorr L, Fuchs J, Beier S, Houben A.
    Cytogenet Genome Res; 2017; 152(2):90-96. PubMed ID: 28719910
    [Abstract] [Full Text] [Related]

  • 3. Fluorescence in situ hybridization on plant extended chromatin DNA fibers for single-copy and repetitive DNA sequences.
    Yang K, Zhang H, Converse R, Wang Y, Rong X, Wu Z, Luo B, Xue L, Jian L, Zhu L, Wang X.
    Plant Cell Rep; 2011 Sep; 30(9):1779-86. PubMed ID: 21695528
    [Abstract] [Full Text] [Related]

  • 4. Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultra-sensitive FISH with tyramide signal amplification.
    Khrustaleva LI, Kik C.
    Plant J; 2001 Mar; 25(6):699-707. PubMed ID: 11319036
    [Abstract] [Full Text] [Related]

  • 5. Kmasker--a tool for in silico prediction of single-copy FISH probes for the large-genome species Hordeum vulgare.
    Schmutzer T, Ma L, Pousarebani N, Bull F, Stein N, Houben A, Scholz U.
    Cytogenet Genome Res; 2014 Mar; 142(1):66-78. PubMed ID: 24335088
    [Abstract] [Full Text] [Related]

  • 6. Interphase fluorescence in situ hybridization mapping: a physical mapping strategy for plant species with large complex genomes.
    Jiang J, Hulbert SH, Gill BS, Ward DC.
    Mol Gen Genet; 1996 Oct 16; 252(5):497-502. PubMed ID: 8914510
    [Abstract] [Full Text] [Related]

  • 7. Fluorescence in situ hybridization to localize transgenes in plant chromosomes.
    Harwood WA, Bilham LJ, Travella S, Salvo-Garrido H, Snape JW.
    Methods Mol Biol; 2005 Oct 16; 286():327-40. PubMed ID: 15310931
    [Abstract] [Full Text] [Related]

  • 8. Super-stretched pachytene chromosomes for fluorescence in situ hybridization mapping and immunodetection of DNA methylation.
    Koo DH, Jiang J.
    Plant J; 2009 Aug 16; 59(3):509-16. PubMed ID: 19392688
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Preparation of samples for comparative studies of plant chromosomes using in situ hybridization methods.
    Walling JG, Pires JC, Jackson SA.
    Methods Enzymol; 2005 Aug 16; 395():443-60. PubMed ID: 15865979
    [Abstract] [Full Text] [Related]

  • 11. Collinearity of homoeologous group 3 chromosomes in the genus Hordeum and Secale cereale as revealed by 3H-derived FISH analysis.
    Aliyeva-Schnorr L, Stein N, Houben A.
    Chromosome Res; 2016 May 16; 24(2):231-42. PubMed ID: 26883649
    [Abstract] [Full Text] [Related]

  • 12. Mapping nonrecombining regions in barley using multicolor FISH.
    Karafiátová M, Bartoš J, Kopecký D, Ma L, Sato K, Houben A, Stein N, Doležel J.
    Chromosome Res; 2013 Dec 16; 21(8):739-51. PubMed ID: 24026304
    [Abstract] [Full Text] [Related]

  • 13. Fluorescent In Situ Hybridization on Extended Chromatin Fibers for High-Resolution Analysis of Plant Chromosomes.
    Dechyeva D, Schmidt T.
    Methods Mol Biol; 2016 Dec 16; 1429():23-33. PubMed ID: 27511164
    [Abstract] [Full Text] [Related]

  • 14. A Fast Air-dry Dropping Chromosome Preparation Method Suitable for FISH in Plants.
    Aliyeva-Schnorr L, Ma L, Houben A.
    J Vis Exp; 2015 Dec 16; (106):e53470. PubMed ID: 26709593
    [Abstract] [Full Text] [Related]

  • 15. FISH mapping for physical map improvement in the large genome of barley: a case study on chromosome 2H.
    Poursarebani N, Ma L, Schmutzer T, Houben A, Stein N.
    Cytogenet Genome Res; 2014 Dec 16; 143(4):275-9. PubMed ID: 25195637
    [Abstract] [Full Text] [Related]

  • 16. Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H.
    Aliyeva-Schnorr L, Beier S, Karafiátová M, Schmutzer T, Scholz U, Doležel J, Stein N, Houben A.
    Plant J; 2015 Oct 16; 84(2):385-94. PubMed ID: 26332657
    [Abstract] [Full Text] [Related]

  • 17. Floral chromosomes of Arabidopsis thaliana for detecting low-copy DNA sequences by fluorescence in situ hybridization.
    Murata M, Motoyoshi F.
    Chromosoma; 1995 Oct 16; 104(1):39-43. PubMed ID: 7587593
    [Abstract] [Full Text] [Related]

  • 18. In situ localization of yeast artificial chromosome sequences on tomato and potato metaphase chromosomes.
    Fuchs J, Kloos DU, Ganal MW, Schubert I.
    Chromosome Res; 1996 Jun 16; 4(4):277-81. PubMed ID: 8817067
    [Abstract] [Full Text] [Related]

  • 19. The use of FISH in chromosomal localization of transgenes in rice.
    Dong J, Kharb P, Cervera M, Hall TC.
    Methods Cell Sci; 2001 Jun 16; 23(1-3):105-13. PubMed ID: 11741147
    [Abstract] [Full Text] [Related]

  • 20. FISH-based mitotic and meiotic diakinesis karyotypes of Morus notabilis reveal a chromosomal fusion-fission cycle between mitotic and meiotic phases.
    Xuan Y, Li C, Wu Y, Ma B, Liu R, Xiang Z, He N.
    Sci Rep; 2017 Aug 29; 7(1):9573. PubMed ID: 28852033
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.